APPLIED SCIENCE AND TECHNOLOGY DIVISION

Source Testing & Engineering Branch

B-regulation and the second se	ROUTIN	IG RECO	The state of the s
DATE	FROM	TO	RETICH
11-7-96	HM	5M .	ASSIGN
11/13/96	J°M	HSC	Evaluate
11/19/96	HEC	5H	Review
11/24/96	MZ	MM	1 20g Out
6-4-13	GL	ے لے	canned
		***************************************	The state of the s
		-	grant of major as distributed manufactured by the second of the second o
		<u> </u>	
		1	and the second s
FERENCE TO OTHE	R		T.

R

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT APPLIED SCIENCE and TECHNOLOGY * SOURCE TESTING and ENGINEERING BRANCH

PERFORMANCE TEST DATABASE

STID: P R 96082	APPL#:		COID: 012155
COMPANY: BASIC EQUIPMENT: CONTROL EQUIPMENT:	Armstrong World Industries Boiler		
PERMIT NUMBER: RULES / PERMITS: EMISSION LIMITS: POLLUTANTS:	Rules 2012, 1346 CO NOx, NO/NO2		
AST ASSIGNED: ENG. CONTACT:	<u>Choe</u> <u>Desh Jain</u>	UNIT:	<u>2555</u>
ENGINEERING FIRM: TEST FIRM: TEST FIRM CONTACT:	Carnot Bruce Fangmeier	PHONE:	(714) 259-9520

PROTOCOL STATUS: Conditionally Acceptable

REPORT STATUS: Pending Report Evaluation

	PROTOCOL	REPORT
EVALUATION HOURS		5
ARTICLE DATE		05-Nov-96
<u>TESTED</u>		26-Sep-96
RECEIVED	21-Jun-96	05-Nov-96
REQUESTED	21-Jun-96	
RESPONDED	10-Jul-96	
<u>APPROVED</u>	10-Jul-96	
ISSUED	11-Jul-96	
CANCELLED		

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

MEMORANDUM

DATE:

November 19, 1996

TO:

Merrill Hickman

FROM:

John Higuchi M KM J A

SUBJECT:

Evaluation of Source Test Report:

(Requested by Merrill Hickman, November 5, 1996)

IDENTIFICATION:

(Facility ID No. 012155)

COMPANY:

Armstrong World Industries, South Gate

EOUIPMENT:

Boiler (D156)

REFERENCE: PR 96082 (ASTD Source Test File)

Source Testing & Engineering has evaluated the subject source test report dated October, 1996, for the equipment located in South Gate.

The test report for concentration limit is <u>"acceptable,"</u> meaning that the testing and analytical methods meet District approved standards, the test conditions are indicative of the process under normal or stipulated conditions, and the reported source test results accurately reflect these qualifications.

However, the relative accuracy audit (RAA) showed that the relative accuracy of the flow meter was poor. An alternative relative accuracy audit is recommended. The attached evaluation clarifies the remediation requirements for the RAA.

If there are any questions, please contact Hui Sung Choe at Ext. 2259.

ARC:HSC

Attachment

armstrep.doc: REV 9/5/96

TION GENERAL INFORMA

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT APPLIED SCIENCE & TECHNOLOGY DIVISION * SOURCE TESTING & ENGINEERING APPLICATION / REPORT / REPORT REVIEW

DATE:	November 19, 199	6 E	VALUATOR:	H. Choe	EXT: 2259	
S/T ID:	PR 96082					
СОМРАНҮ:	Armstrong W	Armstrong World Industries				
IDENTIFICATION:	(Facility ID No.	012155)				
EQUIPMENT:	Boiler (D156)					
LOCATION:	South Gate					
TEST FIRM:	Carnot					
EVALUATE:	NO _x at 3% O	2 and RAA p	er Rule 201	2		
TYPE EVAL: CEMS APPL	CEMS PROT RECLAIM Spec	CEMS RPRT	□PERF PROT	□PERF RPRT □LGE □PRC):	OTHER:	
CEMS PLAN	6/12 MO RECERT	□ALT EMIS FACT	⊠3-YR (RE)CER	ACEMS	OTHER:	
1. SPECIFIC	REQUIREMENT	S:				
	n determined to c			by the Evaluation on, as presented.	s Unit staff and	
has beer	n determined to c	ontain insuffic	ient informa	by the Evaluation tion, or requires attached discussion	further	
Con Rep Rule Sam Qua	ipment/Process Enpleteness of Appresentativeness of Permit Fulfillment apling & Analyticality Assurance culations	olication/Repo f Data & Proc ent.	_			

2. COMMENTS:

OVERVIEW

Armstrong World Industries source tested the boiler (D156) for NO_x concentration limit and fuel meter relative accuracy compliance per Rule 2012.

REPRESENTATIVENESS OF DATA & PROCESS

NERAL

The fuel meter relative accuracy was found to be - 43%, meaning that the calculated stack flow rate (dscfm) was 43% lower than the actual measured stack flow rate (dscfm). Due to the high discrepancy in the flow rates, the relative accuracy of the fuel meter is questionable.

Also, the flow velocity in the stack was very low (< 0.05 in. H₂O). The three run RAA did not show consistent velocity profiles from one run to another. Because of the extremely low velocity in the stack and the poor relative accuracy obtained, an alternative RAA is recommended to verify the fuel meter relative accuracy.

3. REMEDIATION:

An alternative RAA should be conducted to verify the fuel meter accuracy. An alternative RAA must be proposed by the facility for review and approval.

October 7, 1996 AWI1J-11523 R120G300.T

Mr. Merrill Hickman Air Quality Engineer II South Coast Air Quality Management District 21865 East Copley Drive Diamond Bar, CA 91765-4182

Subject:

RECLAIM Large Source Compliance Testing at Armstrong World

Industries, Inc. (SCAQMD Facility I.D. No. 012155)

Dear Merrill:

Enclosed please find one (1) copy of the document titled "Test Report for SCAQMD Rule 2012 (RECLAIM) Large Source Compliance Testing at Armstrong World Industries, Inc." This report documents the results of the RECLAIM Large Source compliance testing that Carnot conducted on the process steam boiler (SCAQMD Device I.D. D156) at Armstrong's South Gate manufacturing facility on September 26, 1996.

As you may recall, Carnot prepared a unit-specific test protocol for testing this boiler which was submitted to the SCAQMD on June 13, 1996; the protocol was granted conditional approval by the SCAQMD on July 19, 1996. However, on July 18 the SCAQMD issued a standard test protocol for boilers classified as Large Sources under RECLAIM and subject to a concentration limit (SCAQMD Standard Protocol SP-B-001), which greatly simplified the source testing requirements for such sources. As a consequence, a decision was made by Armstrong and Carnot to use this standard protocol to conduct the testing of this boiler. All testing was conducted per the standard protocol, and a Certification of No Exceptions to Standard Protocol was signed by Mr. William Woyshner of Armstrong World Industries, Inc. and is included in Appendix B.5 of the report.

If additional copies of this report are needed or if you have further questions, please contact me at (714) 259-9520; my fax number is (714) 259-0372.

Sincerely,

CARNOT

Bruce A. Fangmeier

Huguin)

Senior Engineer

BAF/wp

cc:

Bill Woyshner, Armstrong World Industries, Inc.

TEST REPORT FOR SCAQMD RULE 2012 (RECLAIM) LARGE SOURCE COMPLIANCE TESTING AT ARMSTRONG WORLD INDUSTRIES, INC. (SCAQMD FACILITY I.D. NO. 012155)

Prepared For:

ARMSTRONG WORLD INDUSTRIES, INC. South Gate, California

For Submittal To:

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Diamond Bar, California

Prepared By:

Bruce A. Fangmeier

CARNOT Tustin, California

OCTOBER 1996

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and documented in this report were carried out under my direction and supervision.

Bruce A. Fangmeier
Senior Engineer

So. Calif. Measurement Division

I have reviewed, technically and editorially, details, calculations, results, conclusions and other appropriate written material contained herein, and hereby certify that the presented material is authentic and accurate.

Robert A. Finken

Vice President So. Calif. Measurement Division Date $\frac{10}{7}$

TABLE OF CONTENTS

<u>SECT</u>	<u>ION</u>	PAGE
1.0	INTRODUCTION 1.1 PROGRAM OVERVIEW 1.2 TEST PROTOCOL 1.3 SUMMARY OF RESULTS 1.4 REPORT ORGANIZATION	1 1 2
2.0	UNIT DESCRIPTION	3
3.0	TEST DESCRIPTION 3.1 UNIT OPERATION 3.2 SAMPLE LOCATIONS 3.3 TEST PROCEDURES 3.3.1 NO _x , O ₂ and CO ₂ 3.3.2 Moisture 3.3.3 Velocity 3.4 FUEL FLOW MEASUREMENT 3.5 COMPLIANCE DETERMINATION CALCULATIONS 3.5.1 Concentration Limit Compliance 3.5.2 Fuel Meter Relative Accuracy Audit	5 5 8 8 8 10 10
4.0	RESULTS	13
APPE	ENDICES	
A	MEASUREMENT PROCEDURES	. A-1
В	QUALITY ASSURANCE B.1 Quality Assurance Program Summary B.2 ARB Certification/SCAQMD LAP Letter B.3 Quality Assurance Data B.4 Statement of Carnot's Compliance With SCAQMD Rule 304(k) B.5 Certification of No Exceptions to Standard Protocol	. B-2 . B-7 . B-8 . B-9
С	REFERENCE METHOD DATA C.1 Sample Location C.2 Carnot CEMS Data C.3 Fuel Meter Relative Accuracy Audit Calculations C.4 Fuel Meter Relative Accuracy Audit Velocity Data C.5 Fuel Meter Relative Accuracy Audit Moisture Data	. C-2 . C-3 . C-4 . C-5

TABL	E OF CONTENTS (continued)
	PAGE
D	ARMSTRONG PROCESS STEAM BOILER DATA D-1 D.1 Fuel Flow Measurements for Fuel Meter Relative Accuracy Audit D-2 D.2 Boiler Circle Chart and Boiler Log D-3
E	EMISSION CALCULATIONS E-1
F	CARNOT CEMS STRIP CHART

SECTION 1.0

INTRODUCTION

1.1 PROGRAM OVERVIEW

Carnot was contracted by Armstrong World Industries, Inc. (AWI) to provide measurement services for their floor tile manufacturing facility located at 5037 Patata Street in South Gate, California (SCAQMD Facility I.D. No. 012155). Carnot conducted emission measurements on the facility's process steam boiler (SCAQMD Device I.D. D156) to demonstrate compliance with the concentration limit for this boiler under SCAQMD Rule 2012 (RECLAIM), as well as to determine the relative accuracy of the boiler's totalizing fuel meter.

AWI operates a single boiler used to produce process steam for their South Gate facility which is classified as a Large Source under SCAQMD Rule 2012 (RECLAIM). The boiler is used to produce steam used in various process units at the floor tile manufacturing facility. The boiler is served by a single totalizing fuel meter which was installed specifically to comply with the requirements of SCAQMD Rule 2012. The boiler has a RECLAIM concentration limit of 30 ppmv NO_x at 3% O₂.

The RECLAIM Large Source compliance testing for the process steam boiler at AWI's South Gate manufacturing facility was conducted on September 26, 1996. Testing was coordinated by Bill Woyshner of AWI and Bruce Fangmeier of Carnot. The Carnot test team consisted of Bruce Fangmeier and Rick Madrigal.

1.2 TEST PROTOCOL

Carnot prepared a unit-specific test protocol for testing this boiler which was submitted to the SCAQMD on June 13, 1996. Conditional approval for the unit-specific test protocol was issued on July 19, 1996. On July 18, however, the SCAQMD issued a standard test protocol for boilers classified as Large Sources under RECLAIM and subject to a concentration limit (SCAQMD Standard Protocol SP-B-001), which greatly simplified the source testing requirements for such sources. As a consequence, a decision was made by AWI and Carnot to use this standard protocol to conduct the testing of this boiler. All testing was conducted per the standard protocol, and a Certification of No Exceptions to Standard Protocol was signed by Mr. Woyshner of AWI and is included in Appendix B.5.

INTRODUCTION

SECTION 1.0

1.3 SUMMARY OF RESULTS

Table 1-1 summarizes the final results of the RECLAIM Large Source compliance testing and fuel meter relative accuracy audit for the process steam boiler at AWI's South Gate facility.

TABLE 1-1 RESULTS SUMMARY RECLAIM LARGE SOURCE COMPLIANCE TESTING PROCESS STEAM BOILER ARMSTRONG WORLD INDUSTRIES, INC. SOUTH GATE PLANT SEPTEMBER 26, 1996

CONCENTRATION LIMIT COMPLIANCE:

Measured NO, Emissions:

28.19 ppmv NO_x at 3% O_2

that designing to 10 feet a comment of 17 years of the feet of the

FUEL METER RELATIVE ACCURACY AUDIT:

Relative Accuracy:

-43.3%

1.4 REPORT ORGANIZATION

Section 2.0 of this report describes AWI's process steam boiler and the normal operational mode of the boiler, and also includes a description of the boiler's totalizing fuel meter. Section 3.0 describes the test procedures used during the RECLAIM Large Source compliance testing on the boiler. Section 4.0 presents detailed results of the compliance testing, including RECLAIM concentration limit compliance and fuel meter relative accuracy. The appendices to the report completely detail the RECLAIM Large Source compliance testing on the boiler.

SECTION 2.0

UNIT DESCRIPTION

The process steam boiler at AWI's South Gate manufacturing facility is a Tampella Keeler Model No. CP 200 hp water-tube boiler equipped with a Keeler Dorr Model WB-1-13-FGR gas burner, incorporating flue gas recirculation (FGR) for low NO_x operation. The boiler has a maximum rated heat input of 14.07 MMBtu/hr and maximum steam production of 9,000 lb/hr at approximately 125 psig. The boiler's RECLAIM concentration limit is 30 ppmv NO_x at 3% O_2 .

The boiler is equipped with a totalizing fuel meter which was installed by Measurement Control Systems, Inc. specifically to comply with the requirements of SCAQMD Rule 2012. The totalizing fuel meter is an American Meter Company Model 3GT-10M axial flow turbine meter.

It should be noted that this boiler's steam production capacity is significantly larger than the actual steam needs of AWI's manufacturing facility. It normally operates with a heat input of approximately 6.5 MMBtu/hr, producing approximately 6,000 lb/hr of steam. To compensate for this oversized boiler, and to reduce the amount of natural gas burned in the boiler, AWI installed an Allen-Bradley boiler control system to control main burner operation as follows:

- 1. The boiler igniter, used to ignite the natural gas flowing out of the main burner, is lit at all times.
- 2. The pressure in the main steam drum is used to control the on/off sequence of gas flow to the main burner, with a lower pressure setpoint of 118 psig and an upper pressure setpoint of 125 psig.
- 3. As steam is sent to the manufacturing facility, the pressure in the main steam drum slowly drops until it reaches the lower setpoint of 118 psig. At that time the natural gas supply valves leading to the main burner open, and the natural gas flowing out of the main burner is lit by the boiler igniter. The firing of the main burner continues until the pressure in the main steam drum reaches the upper setpoint of 125 psig, at which time the gas supply valves to the main burner shut, extinguishing the main burner.

- 4. This on/off sequence is repeated several times throughout each hour of boiler operation, with the main burner firing for approximately four minutes and then shutting off for approximately four minutes.
- 5. The flue gas recirculation (FGR) control valves, which allow flue gas to be drawn from the boiler exit and into the burner windbox, are controlled by the temperature of the flue gas at the boiler exit. When this temperature reaches a setpoint of approximately 325 degrees, the valves open and start the recirculation of flue gas. This setpoint is only reached when the main burner is actually firing.

As described in Section 3.1, the operation of the boiler was adjusted during the RECLAIM Large Source compliance testing in order to obtain a testable boiler operating condition.

SECTION 3.0

TEST DESCRIPTION

This section outlines the procedures which were followed for the RECLAIM Large Source compliance testing program on the process steam boiler at AWI's South Gate facility. Included in the following sections are discussions of boiler operation during testing, and a description of the sample location and reference method test procedures.

3.1 UNIT OPERATION

In accordance with Section 4.1 of SCAQMD Standard Protocol SP-B-001, the RECLAIM Large Source compliance testing and fuel meter relative accuracy audit on the process steam boiler at AWI was conducted at a single boiler load, approximately equal to 6.5 MMBtu/hr of heat input and producing approximately 6,000 lb/hr of steam. As was noted in Section 2.0, the boiler's steam production capacity is significantly larger than the actual steam needs of AWI's manufacturing facility, and the Allen-Bradley control system of the boiler cycles the main burner on and off. As it was not possible to achieve meaningful test results with the boiler cycling in this manuer, a valve on the vent line leading from the main steam drum to the atmosphere was opened to vent a portion of the generated steam to the atmosphere and forcing the boiler to begin firing the main burner constantly. Appendix D.2 includes a copy of the circle chart produced by the boiler's recorder showing the shift from cyclic to constant firing of the main burner.

3.2 SAMPLE LOCATIONS

Figure 3-1 includes plan and side views of the exhaust duct configuration leading from the boiler to the concrete stack. As can be seen in this figure, the exhaust duct includes bends, contractions and expansions over its length. Since the concrete stack does not have access for reference method sampling, four sample ports are installed in a straight run of rectangular duct inside the boiler house.

Figure 3-2 provides the detailed layout of the sample ports which were used for this test program. The sample ports are installed in a section of rectangular duct 7 ft 6 in long and 30" deep by 44.5" high. The sample ports are located 71-3/8" (2.0 diameters) downstream of a duct bend and 17-5/8" (0.5 diameters) from a duct constriction.

Figure 3-1. AWI Exhaust Duct Configuration

Figure 3-2. Detail of Sample Port Location

3.3 TEST PROCEDURES

Table 3-2 lists the test methods which were used during the compliance measurement program at AWI's South Gate facility. Testing consisted of one sixty-minute gaseous measurement run to determine compliance with the RECLAIM concentration limit; a three-run relative accuracy audit on the fuel meter was also performed during this same sixty-minute period. Specific details of the test methods are described in the sections below.

3.3.1 NO₂, O₂ and CO₂

Gaseous emissions (NO_x , O_2 , CO_2) were measured per SCAQMD Method 100.1 using Carnot's continuous emissions monitoring system (CEMS). For the single boiler load condition, a 60-minute gaseous measurement run was conducted using a 12-point traverse of the duct, with sampling conducted for five minutes per traverse point. The twelve traverse points were located according to SCAQMD Method 1.1 criteria, and the actual CEMS traverse point measurements used are documented in Appendix C.1.

3.3.2 Moisture

Moisture content in the flue gas for use in the fuel meter relative accuracy audit calculations was determined per SCAQMD Method 4.1. The moisture train was operated concurrently with the sixty-minute gaseous measurement run. The stainless steel moisture probe was positioned at the center of the duct in the existing port shown on Figure 3-2.

3.3.3 Velocity

Flow measurements for use in the fuel meter relative accuracy audit were conducted three times during the gaseous and moisture measurement runs per SCAQMD Method 2.1 using an S-type pitot probe. Due to the low ΔP values at the traverse points, the velocity measurements were done with a low-range micromanometer, which was leak checked and leveled prior to each velocity traverse. The three velocity traverses were conducted at roughly twenty-minute intervals during the sixty-minute gaseous and moisture measurement runs. Sixteen traverse points, located according to SCAQMD Method 1.1 criteria, were used for each velocity traverse, and the actual velocity traverse point measurements used are documented in Appendix C.1.

TEST DESCRIPTION

SECTION 3.0

TABLE 3-2
RECLAIM LARGE SOURCE COMPLIANCE TEST PROCEDURES
ARMSTRONG WORLD INDUSTRIES, INC.
SOUTH GATE FACILITY

Species	Units	Reference Method	Principle	Comments
NO_x	ppmv dry	SCAQMD 100.1	Chemiluminescence	12-point traverse
\mathbf{O}_2	% vol. dry	SCAQMD 100.1	Electrochemical Cell	12-point traverse
CO_2	% vol. dry	SCAQMD 100.1	NDIR	12-point traverse
Moisture	%	SCAQMD 4.1	Gravimetric	Single point
Velocity	ft/sec	SCAQMD 2.1	Differential Pressure	16-point traverse, S-type pitot probe
Stack Flow	dscfm	SCAQMD 2.1	Calculated	

3.4 FUEL FLOW MEASUREMENT

In order to verify the accuracy of the fuel meter, a three-run relative accuracy audit was conducted during the RECLAIM Large Source compliance testing on the boiler. Three stack flows, in dscfm, were calculated using the three measured velocity traverses and moisture from the single moisture run, and compared to three stack flows calculated using measured fuel flows and an EPA Method 19 F-factor for natural gas.

The fuel flow rate to the main burner was determined by Carnot at ten-minute intervals during the sixty-minute compliance measurement run. It should be noted that the index on the totalizing fuel meter has 1,000 actual cubic feet (acf) as its smallest moving digit; a sweep dial, with one revolution of the sweep dial equal to 100 acf is also included on the index. To obtain meaningful fuel flow rate measurements, Carnot measured the time required to meter 100 acf on the sweep dial using a stopwatch; these measurements were done every ten minutes. After converting the time on the stopwatch to minutes, the actual fuel flow in actual cubic feet per minute (acfm) was determined by dividing this time into 100 acf. The actual fuel flow rate in acfm was multiplied by pressure and temperature correction factors to obtain the fuel flow rate in standard cubic feet per minute (scfm).

3.5 COMPLIANCE DETERMINATION CALCULATIONS

In order to meet the requirements of SCAQMD Rule 2012, the boiler must meet the following two requirements:

- 1. At each load condition, the NO_x concentration corrected to 3% O_2 must not exceed the RECLAIM concentration limit of 30 ppmv NO_x at 3% O_2 , and
- 2. The relative accuracy of the totalizing fuel meter must be determined by comparing the average of the three measured stack flow rates to the three stack flow rates calculated measured fuel flow and an EPA Method 19 F-factor.

3.5.1 Concentration Limit Compliance

The sixty-minute gaseous test run measured NO_x and O_2 concentrations in the flue gas from the boiler. The measured NO_x concentration was corrected to 3% O_2 using Equation 3-1:

$$(NO_x)_c = NO_x \times \left[\frac{20.9 - 3\%}{20.9 - O_2} \right]$$
 Eq. 3-1

where:

corrected NO_x concentration, ppmv dry at 3% O₂

 $(NO_x)_c = NO_x = 0$ measured NO_x concentration, ppmv dry measured O2 concentration, % vol. dry

The NO_x concentration corrected to 3% O₂ must not exceed the RECLAIM concentration limit of 30 ppmv NO_x at 3% O_2 .

3.5.2 Fuel Meter Relative Accuracy Audit

As noted in Section 3.4, a three-run relative accuracy audit was conducted during the RECLAIM Large Source compliance testing on the boiler. Three stack flows, in dscfm, were calculated using the three measured velocity traverses and moisture from the single moisture run, and compared to three stack flows calculated using measured fuel flows and an EPA Method 19 The calculations used are outlined in the paragraphs below. F-factor for natural gas.

After each of the three velocity measurement runs, the velocity data (velocity head and temperature at each traverse point, stack static pressure) and moisture content of the flue gas from the single moisture run was used to determine the measured flue gas flow rate, A, using Equations 1a through 1h in Appendix E.

For the three twenty-minute relative accuracy periods, the average fuel flow rate in scfm. combined with the EPA Method 19 F-factor for natural gas, was used to determine calculated flue gas flow rates using Equation 3-2 below:

$$C = Q_f x F x HHV x \frac{MMBtu}{10^6 Btu} x \frac{20.9}{20.9 - O_2}$$
 Eq. 3-2

where:

calculated flue gas flow rate, dscfm

average fuel flow, scfm

EPA Method 19 F-factor for natural gas, 8,710 dscf/MMBtu

higher heating value of natural gas, 1,050 Btu/scf measured O₂ concentration in flue gas, % vol. dry The relative accuracy of the fuel meter was then determined by taking the average of the measured flue gas flow rates, the average of the calculated EPA Method 19 flow rates, and inserting them into Equation 3-3:

$$RA = \frac{C_{avg} - A_{avg}}{A_{avg}} \times 100\%$$
 Eq. 3-3

where:

RA =

relative accuracy, %

 $C_{avg} =$

average calculated flue gas flow rate, dscfm

average measured flue gas flow rate, dscfm

SECTION 4.0

RESULTS

Table 4-1 presents the results of the RECLAIM Large Source compliance testing and fuel meter relative accuracy audit for the process steam boiler at AWI's South Gate facility.

TABLE 4-1 RESULTS SUMMARY RECLAIM LARGE SOURCE COMPLIANCE TESTING PROCESS STEAM BOILER ARMSTRONG WORLD INDUSTRIES, INC. SOUTH GATE PLANT SEPTEMBER 26, 1996

CONCENTRATION LIMIT COMPLIANCE

THE CONTROL OF THE LOCAL PARK LOCAL PROPERTY AND A SECOND PROPERTY AND A SECOND PROPERTY OF THE PROPERTY OF TH

, Test No.	Test Time	Measured Emissions (ppmv NO_x at 3% O_2)	Concentration Limit (ppmv NO_x at 3% O_2)
1-CEM	1300-1400	28.19	30

FUEL METER RELATIVE ACCURACY AUDIT

Test No.	Test Time	Actual Flow (dscfm)	Calculated Flow (dscfm)
1A-RAA	1300-1320	2,878.7	1,322.8
1B-RAA	1320-1340	2,301.4	1,372.5
1C-RAA	1340-1400	1,935.4	1,338.1
Average		2,371.8	1,344.4

Fuel Meter Relative Accuracy = -43.3%

As shown in Table 4-1, emissions of NO_x measured during the sixty-minute gaseous measurement run were 28.19 ppmv at 3% O_2 , which is below the RECLAIM concentration limit of 30 ppmv NO_x at 3% O_2 specified for the boiler in the Facility Permit to Operate.

The agreement between actual and calculated stack flow rates is very poor, as shown by the relative accuracy of -43.3%. As can be seen in the velocity traverse data sheets included in Appendix C.4, the measured ΔPs at every traverse point were very low, with average values of 0.0183 iwg, 0.0110 iwg and 0.0078 iwg for tests 1A-RAA, 1B-RAA and 1C-RAA, respectively. As noted previously, these ΔPs were measured with a low-range micromanometer to ensure accurate measurements and care was taken to leak check and level the manometer before each velocity traverse. However, even with the use of the micromanometer, the SCAQMD may feel that these ΔP values are unacceptably low to measure accurately.

Section 2.0 notes the fact that the boiler is significantly oversized relative to the actual steam demands of AWI's manufacturing facility; as a consequence, the duct leading to the stack is also significantly oversized relative to the amount of flue gas flow passing through it. In addition, Figure 2-1 shows that the sample port location is downstream of the FGR intake, which removes a portion of the flue gas and sends it to the windbox of the main burner, further reducing the amount of flue gas passing the sample ports on the way to the stack. These two factors combine to produce the small ΔPs measured during the three velocity traverses. Due to programming of the boiler's Allen-Bradley control system, it was not possible to increase the boiler load to a higher level to produce higher ΔPs for the fuel meter relative accuracy determination.

It is felt that the poor agreement between actual and calculated stack flow rates is entirely due to the difficultly in obtaining meaningful stack flow rates in an oversized flue gas duct at a relatively low boiler load; the high relative accuracy percentage is not an indication of the true accuracy of this fuel meter.

APPENDIX A MEASUREMENT PROCEDURES

Continuous Emissions Monitoring System
Oxygen (O₂) by Continuous Analyzer
Carbon Dioxide (CO₂) by Continuous Analyzer
NO/NO_x by Continuous Analyzer
Stack Gas Velocity and Volumetric Flow Rate
Determination of Moisture in Stack Gases

Continuous Emissions Monitoring System

 O_2 , CO, CO_2 , NO, NO_x and SO_2 are measured using an extractive continuous emissions monitoring (CEM) package, shown in the following figure. This package is comprised of three basic subsystems. They are: (1) the sample acquisition and conditioning system, (2) the calibration gas system, and (3) the analyzers themselves. This section presents a description of the sampling and calibration systems. Descriptions of the analyzers used in this program and the corresponding reference test methods follow. Information regarding quality assurance information on the system, including calibration routines and system performance data follows.

The sample acquisition and conditioning system contains components to extract a representative sample from the stack or flue, transport the sample to the analyzers, and remove moisture and particulate material from the sample. In addition to performing the tasks above, the system must preserve the measured species and deliver the sample for analysis intact. The sample acquisition system extracts the sample through a stainless steel probe. The probe is insulated or heated as necessary to avoid condensation. If the particulate loading in the stack is high, a sintered stainless steel filter is used on the end of the probe.

Where water soluble NO_2 and/or SO_2 are to be measured, the sample is drawn from the probe through a heated teflon sample line into an on-stack cooled (approximately 35-40°F) water removal trap. The trap consists of stainless steel flasks in a bath of ice and water. This design removes the water vapor by condensation. The contact between the sample and liquid water is minimized and the soluble NO_2 and SO_2 are conserved. This system meets the requirements of EPA Method 20. The sample is then drawn through a teflon transport line, particulate filter, secondary water removal and into the sample pump. The pump is a dual head, diaphragm pump. All sample-wetted components of the pump are stainless steel or teflon. The pressurized sample leaving the pump flows through a third condensate trap in a refrigerated water bath (≈ 38 °F) for final moisture removal. A drain line and valve are provided to constantly expel any condensed moisture from the dryer at this point. After the dryer, the sample is directed into a distribution manifold. Excess sample is vented through a back-pressure regulator, maintaining a constant pressure of 5-6 psig to the analyzer rotameters.

The calibration system is comprised of two parts: the analyzer calibration, and the system bias check (dynamic calibration). The analyzer calibration equipment includes pressurized cylinders of certified span gas. The gases used are, as a minimum, certified to 1% by the manufacturer. Where necessary to comply with reference method requirements EPA Protocol 1 gases are used. The cylinders are equipped with pressure regulators which supply the calibration gas to the analyzers at the same pressure and flow rate as the sample. The selection of zero, span, or sample gas directed to each analyzer is accomplished by operation of the sample/calibration selector fittings.

The system bias check is accomplished by transporting the same gases used to zero and span the analyzers to the sample system as close as practical to the probe inlet. This is done either by attaching the calibration gas supply line to the probe top with flexible tubing or by actuation of a solenoid valve located at the sample conditioner inlet (probe exit). The span gas is exposed to the same elements as the sample and the system response is documented. The analyzer indications for the system calibration check must agree within 5% of the analyzer calibration. Values are adjusted and changes/repairs are made to the system to compensate for any difference in analyzer readings. Specific information on the analytical equipment and test methods used is provided in the following pages.

THE STATE OF THE PARTY OF THE P

Schematic of CEM System

Method:

Oxygen (O₂) by Continuous Analyzer

Applicable Reference

Methods:

EPA 3A, EPA 20, ARB 100, BA ST-14, SCAQMD 100.1

Principle:

A sample is continuously drawn from the flue gas stream, conditioned, and conveyed to the instrument for direct readout of O_2 concentration.

Analyzer:

Teledyne Model 326A

Measurement Principle:

Electrochemical cell

Ranges:

0-5, 0-10, 0-25% O_2

Accuracy:

1% of full scale

Output:

0-100 mV, linear

Interferences:

Halogens and halogenated compounds will cause a positive interference. Acid gases will consume the fuel cell and cause a slow calibration drift.

Response Time:

90% < 7 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. If Method 20 is used, that method's specific procedures for selecting sample points are used. Otherwise, stratification checks are performed at the start of a test program to select single or multiple-point sample locations.

Analytical Procedure:

An electrochemical cell is used to measure O_2 concentration. Oxygen in the flue gas diffuses through a Teflon membrane and is reduced on the surface of the cathode. A corresponding oxidation occurs at the anode internally, and an electric current is produced that is proportional to the concentration of oxygen. This current is measured and conditioned by the instrument's electronic circuitry to give an output in percent O_2 by volume.

Special Calibration Procedure:

The measurement cells used with the O_2 instrument have to be replaced on a regular basis. After extended use, the cell tend to produce a nonlinear response. Therefore, a three-point calibration is performed at the start of each test day to check for linearity. If the response is not linear $(\pm\ 1\%$ of scale), the cell is replaced.

Method:

Carbon Dioxide (CO2) by Continuous Analyzer

Applicable Reference

Methods:

EPA 3A, ARB 100, BA ST-5, SCAQMD 100.1

Principle:

A sample is continuously drawn from the flue gas stream, conditioned, and conveyed to the instrument for direct readout of CO₂ concentration.

Analyzer:

Horiba PIR 2000

Measurement Principle:

Non-dispersive infrared (NDIR)

Accuracy:

1% of full scale

Ranges:

0-5, 0-10, 0-25%

Output:

0-10 mV

Interferences:

A possible interference includes water. Since the instrument receives dried sample gas, this interference is not significant.

Response Time:

1.2 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously.

Analytical Procedure:

Carbon dioxide concentrations are measured by short path length non-dispersive infrared analyzers. These instruments measure the differential in infrared energy absorbed from energy beams passed through a reference cell (containing a gas selected to have minimal absorption of infrared energy in the wavelength absorbed by the gas component of interest) and a sample cell through which the sample gas flows continuously. The differential absorption appears as a reading on a scale of 0 to 100%.

Method: NO/NO_x by Continuous Analyzer

Applicable Reference EPA 7E, EPA 20; ARB 100, BA ST-13A, SCAQMD 100.1

Methods:

Principle: A sample is continuously drawn from the flue gas stream, conditioned,

and conveyed to the instrument for direct readout of NO or NO_x.

Analyzer: Teco Model No. 10AR

Chemiluminescence Measurement Principle:

Accuracy:

Ranges: 0-2.5, 0-10, 0-25, 0-100, 0-250, 0-1000, 0-2500, 0-10,000 ppm

0-10 mV Output:

Compounds containing nitrogen (other than ammonia) may cause Inferences:

interference.

1% of full scale

Response Time: 90%, 1.5 seconds (NO mode) and 1.7 seconds (NO, mode)

Sampling Procedure: A representative flue gas sample is collected and conditioned using the

CEM system described previously. If EPA Method 20 is used, that method's specific procedures for selecting sample points are used.

Analytica! Procedure: The oxides of nitrogen monitoring instrument is a chemiluminescent

> nitric oxide analyzer. The operational basis of the instrument is the chemiluminescent reaction of NO and ozone (O₃) to form NO₂ in an excited state. Light emission results when excited NO2 molecules revert to their ground state. The resulting chemiluminescence is monitored through an optical filter by a high sensitivity photomultiplier tube, the output of which is electronically processed so it is linearly proportional

to the NO concentration. The output of the instrument is in ppmV.

When NO₂ is expected to be present in the flue gas, a supercooled water dropout flask will be placed in the sample line to avoid loss of NO2. Since NO₂ is highly soluble in water, "freezing out" the water will allow the NO₂ to reach the analyzers for analysis. The analyzer measures NO only. In the NO_x mode, the gas is passed through a moly converter which converts NO₂ to NO and a total NO₃ measurement is obtained. NO2 is determined as the difference between NO and NOx. Use of a moly converter instead of a stainless steel converter eliminates NH₃ interference; NH₃ is converted to NO with a stainless converter, but not

with a moly converter.

Method: Stack Gas Velocity and Volumetric Flow Rate

Reference: EPA Method 2, SCAQMD Method 2.1, ARB Method 2

Principle: The average gas velocity in a stack is determined from the measurement of the gas density and from the measurement of the average velocity head using a Type-S (Stausscheibe) Pitot

tube.

Sampling

The velocity head and temperature are measured at traverse points specified by EPA Method
Procedure:

1 or SCAQMD Method 1.1. The velocity is measured using a Type-S Pitot tube and an
inclined water manometer. The flow coefficient of the pitot tube is known. Temperature of
the gas is measured using a thermocouple. The stack gas molecular weight is determined

from independent measurements of O₂, CO₂, and H₂O concentrations.

Sample Analysis and Recovery: The stack gas velocity is determined from the measured average velocity head, the measured average temperature, the measured average duct static pressure, the measured dry concentrations of O_2 and CO_2 , and the measured concentration of H_2O . The velocity is determined from the following set of equations:

$$V_S = 2.90C_{p_{\chi}} \Delta pT_s \left[\frac{29.92}{P_s} \right] \left[\frac{28.95}{MW_{wet}} \right]$$
 [ft/s]

 $\Delta p = Velocity/Head$, inches H_2O [in. H_2O]

 T_s = Gas Temperature, degrees R [R]

 $P_s = Absolute Static Pressure$ [in Hg]

T_p = Pitot Flow Coefficient [unitless]

$$MW_{wet} = \left[(0.44)(\%CO_2) + (0.32)(\%O_2) + (0.28)(\%N_2) \right] (1 - \frac{\%H_2O}{100}) + (18)(\frac{\%H_2O}{100})$$

The stack gas volumetric flow rate is determined from the measured stack gas velocity, the area of the stack at the measurement plane, and the measured gas temperature and pressure. The volumetric flow rate is determined from the following set of equations:

$$Q = (V_s)(AREA)(60)$$
 [wacfm]

$$Q_{ws} = Q \left[\frac{T_{ref}}{T_{-}} \right] \left[\frac{P_s}{29.92} \right]$$
 [wscfm]

$$Q_{sd} = Q_{ws} \left[1 - \frac{\% H_2 O}{100} \right]$$
 [dscfm]

Method:

Determination of Moisture in Stack Gases

Applicable Ref.

Methods:

EPA 4, ARB 1-4, SCAQMD 4.1

Principle:

A gas sample is extracted at a constant rate from the source; moisture is removed from the sample stream and determined volumetrically or gravimetrically.

Sampling Procedure:

The sample train used in the tests is shown in the following figure. The sample is drawn at a constant rate through a stainless steel probe. The probe is connected to an impinger train by Teflon tubing. The train consists of two Greenburg-Smith impingers which contain 100 ml water, an empty impinger as a knockout, and an impinger containing silica gel to protect the pump from moisture.

THE RESERVE OF THE PROPERTY OF

Sample Train for Determination of Moisture by EPA Method 4

Sample Recovery and Analysis:

Following testing, moisture content is determined gravimetrically from initial and final impinger weights.

APPENDIX B QUALITY ASSURANCE

Appendix B.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY AND ARB CERTIFICATION

Carnot ensures the quality and validity of its emission measurement and reporting procedures through a rigorous quality assurance (QA) program. The program is developed and administered by an internal QA Officer and encompasses seven major areas:

- 1. Development and use of an internal QA manual.
- 2. QA reviews of reports, laboratory work, and field testing.
- 3. Equipment calibration and maintenance.
- 4. Chain of custody.
- 5. Training.
- 6. Knowledge of current test methods.
- 7. Agency certification.

Each of these areas is discussed individually below.

Quality Assurance Manual. Carnot has prepared a QA Manual according to EPA guidelines. The manual serves to document and formalize all of Carnot's QA efforts. The manual is constantly updated, and each member of the Source Test Division is required to read and understand its contents. The manual includes details on the other six QA areas discussed below.

<u>QA Reviews</u>. Carnot's review procedure includes review of each source test report by the QA Officer, and spot check reviews of laboratory and field work.

The most important review is the one that takes place before a test program begins. The QA Officer works closely with Source Test Division personnel to prepare and review test protocols. Test protocol review includes selection of appropriate test procedures, evaluation of any interferences or other restrictions that might preclude use of standard test procedures, and evaluation and/or development of alternate procedures.

Equipment Calibration and Maintenance. The equipment used to conduct the emissions measurements is maintained according to the manufacturer's instructions to ensure proper operation. In addition to the maintenance program, calibrations are carried out on each measurement device according to the schedule outlined by the California Air Resources Board (CARB). The schedule for maintenance and calibrations are given in Tables B-1 and B-2. Quality control checks are also conducted in the field for each test program. The following is a partial list of checks made as part of each CEM system test series.

- Sample acquisition and conditioning system leak check.
- 2-point analyzer calibrations (all analyzers)
- 3-point analyzer calibrations (analyzers with potential for linearity errors).
- Complete system calibration check ("dynamic calibration" through entire sample system).

- Periodic analyzer calibration checks (once per hour) are conducted at the start and end of each test run. Any change between pre- and post-test readings are recorded.
- All calibrations are conducted using gases certified by the manufacturer to be + 1% of label value (NBS traceable).

Calibration and CEM performance data are fully documented, and are included in each source test report.

<u>Chain of Custody</u>. Carnot maintains full chain of custody documentation on all samples and data sheets. In addition to normal documentation of changes between field sample custodians, laboratory personnel, and field test personnel, Carnot documents every individual who handles any test component in the field (e.g., probe wash, impinger loading and recovery, filter loading and recovery, etc.).

Samples are stored in a locked area to which only Source Test Division personnel have access. Neither other Carnot employees nor cleaning crews have keys to this area.

Data sheets are copied immediately upon return from the field, and this first generation copy is placed in locked storage. Any notes made on original sheets are initialed and dated.

<u>Training</u>. Personnel training is essential to ensure quality testing. Carnot has formal and informal training programs which include:

- 1. Attendance at EPA-sponsored training courses.
- 2. Enrollment in EPA correspondence courses.
- 3. A requirement for all technicians to read and understand Carnot's QA Manual.
- 4. In-house training and QA meetings on a regular basis.
- 5. Maintenance of training records.

Knowledge of Current Test Methods. With the constant updating of standard test methods and the wide variety of emerging test methods, it is essential that any qualified source tester keep abreast of new developments. Carnot subscribes to services which provide updates on EPA and CARB reference methods, and on EPA, CARB and SCAQMD rules and regulations. Additionally, source test personnel regularly attend and present papers at testing and emission-related seminars and conferences. Carnot personnel maintain membership in the Air and Waste Management Association, the Source Evaluation Society, and the ASME Environmental Control Division.

AGENCY CERTIFICATION

Carnot is certified by the CARB as an independent source test contractor for gaseous and particulate measurements. Carnot is certified by the SCAQMD as an independent source test contractor for gaseous and particulate measurements using SCAQMD Methods 1, 2, 3, 4, 5, 6, 7 and 100.1. Carnot also participates in EPA QA audit programs for Methods 5, 6 and 7.

TABLE B-1
SAMPLING INSTRUMENTS AND EQUIPMENT CALIBRATION SCHEDULE
As Specified by the CARB

Frank Branch secretary by the La	en anema sas bankan, sasa	emak delativa karak membakan delah kalin men	and of the transmission of the
Instrument Type	Frequency of Calibration	Standard of Comparison or Method of Calibration	Acceptance Limits
Orifice Meter (large)	12 months	Calibrated dry test meter	\pm 2% of volume measured
Dry Gas Meter	12 months or when repaired	Calibrated dry test meter	\pm 2% of volume measured
S-Type Pitot (for use with EPA-type sampling train	6 months	EPA Method 2	Cp constant (+5%) over working range; difference between average Cp for each leg must be less than 2%
Vacuum Gauges Pressure Gauges	6 months	Manometer	± 3%
Field Barometer	6 months	Mercury barometer	\pm 0.2" Hg
Temperature Measurement	6 months	NBS mercury thermometer or NBS calibrated platinum RTD	± 4°F for <400°F ± 1.5% for >400°F
Temperature Readout Devices	6 months	Precision potentiometer	± 2% full scale reading
Analytical Balance	12 months (check prior to each use)	Should be performed by manufacturer or qualified laboratory	\pm 0.3 mg of stated weight
Probe Nozzles	12 Months	Nozzle diameter check micrometer	Range < ± 0.10 mm for three measurements
Continuous Analyzers	Depends upon use, frequency and performance	As specified by manufacturers operating manuals, EPA NBS gases and/or reference methods	Satisfy all limits specified in operating specifications

TABLE B-2 EQUIPMENT MAINTENANCE SCHEDULE Based on Manufacturer's Specifications and Carnot Experience

	***************************************		#2-70
Equipment	Performance Requirement	Maintenance Interval	Corrective Action
Pumps	 Absence of leaks Ability to draw manufacturer required vacuum and flow 	Every 500 hours of operation or 6 months, whichever is less	 Visual inspection Clean Replace worn parts Leak check
Flow Measuring Device	 Free mechanical movement Absence of malfunction 	Every 500 hours of operation or 6 months, whichever is less After each test, if used in H ₂ S sampling or other corrosive atmospheres	 Visual inspection Clean Calibrate
Sampling Instruments	 Absence of malfunction Proper response to zero, span gas 	As required by the manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	Absence of leaks	Depends on nature of use	 Steam clean Leak check
Mobile Van Sampling Systems	Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling Lines	Sample degradation less than 2%	After each test or test series	Blow filtered air through line until dry

Appendix B.2

ARB Certification/SCAQMD LAP Letter

21865 E. Copley Drive, Diamond Bar, CA 91765-4182 (909) 396-2000

RECEIVED

June 21, 1996

JUN 2 4 1996

Robert A. Finken

CARNOT

Carnot

So. Cal. Measurement Division 15991 Red Hill Avenue, Suite 110

Tustin, Ca.

92680

Laboratory:

Carnot, So. Cal. Measurement Div.

Reference #:

93 LA 1103

Application Date:

May 5, 1995

Dear Mr. Finken:

I received your letter (via FAX) requesting renewal of your LAP approval (which had lapsed on 5/17/96) for Rule 1420 Ambient Sampling and Rule 1420 Source Sampling and I am pleased to inform you that your firm has been reapproved to perform this testing, with the understanding that District or other specified methods, procedures and policies must be strictly followed. Approval ensures that your lab/test facilities have demonstrated the capability to meet the District's testing and analysis requirements for the following methods:

SCAQMD Methods 1-4
SCAQMD Method 6.1 (Incl. 5)
SCAQMD Method 7.1 (Sampling)
SCAQMD Method 100.1 (Conditional)

Approval is granted for the period beginning: November 16, 1995 and ending: November 16, 1996.

Rule 1420 Ambient Sampling (without modeling)
Rule 1420 Source Sampling

Approval is granted for the period beginning: June 21, 1996 and ending: June 21, 1997.

Appendix B.3

Quality Assurance Data

CARNOT CEM PERFORMANCE DATA

CLIENT/LOCATION:	ARMSTRONG	SOUTH GAT	ZDATE: 9	126/96	
TRUCK/CEM ID: E	S-50 "		BY: <u>134</u>	F	
	SYS	TEM CO	VFIGURAT	TON	
ANALYZERS IN SER	VICE				
ANALYZERS:	O ₂	C	O ₂	CO	NO _x
MODEL:	Teledyne 371A	Hoviba	PIR-2000	, and the state of	TECO IOAR
SERIAL NO.:	N/A	8020	35	ACCIONAL.	10A/R-20727-193
FROBE AND HEATE	DLINE			COMULTICIER	
LENGTH/DIAMETER:	3.5'/ 5/8" OD	>	1		E (CHECK FLOW): V
LINER MATERAL:					IDE (CHECK FLOW):
HEATED PROBE (Y/N	,			SER TEMPERATUR	
HEATED LINE (Y/N):	У		FILTER CONDITION (COND. OR DATE LAST CHANGED):		
HEATED LINE TEMP	221"	engapurunununun daukakun kooka 1950-1950 (PA 1950-1			
SAWPLE LINE				LEAK CHECK	
LENGTH: 75'	aki dabi di daba da	000000000000000000000000000000000000000	PRE-TES	(cfh): 0.00 G	FG @ 21"Hg
LINER MATERIAL:	eflon	annanananananan an annanan an an an an a	POST-TE	ST (cfh):	U
DIAMETER: 3/2"		ka a aban ditanan ana ana ana ana ana ana ana ana an	LEAK RAT	TE (%) =	
SYSTEM BIAS LINE:	4" Polyflow			OST - TEST (cfh)	x100= %
ON-STACK CONDITI				FLOW RATE(cfm) VERSION EFFICIE	
				NDER No.:	NC.
IN SERVICE (Y/N):	TION (CHECK FLOW):			(22 (21 22))	
11	·	OKV		NO.:	SEE FOLLOWING TWO PAGES
COOLANT: ICE/H2O TEMPERATURE: 250		HIGH CAL NO _x : HIGH CAL NO/(as found);			
LIVII CHATORE. 3		en e tiale	CONDITI		
SAMPLE PRESSURE		7-KU-C 1111C		SYSTEM RESPON	ISE TIME CHECK
SAMPLE VACUUM:	5"Ha				sec. <u>33</u> sec. <u>34</u> avg.
NOx VACUUM: 200	9" Hã		l .	•	sec. <u>05</u> sec. <u>25</u> avg.

CARNOT

NO2 CONVERTER EFFICIENCY DATA AND CALCULATIONS

Client: --

Performed By: CH

Location: Shop

Analyzer Serial #: 10AR-20727-192

CEM I.D.: ES-50

Analyzer Range:

100 ppm

Low Cal Gas Value:

0.00 ppm

High Cal Gas Value:

89.12 ppm

Cylinder #: AAL18295

NO2 Cal Gas Value: 89.34

ppm

Cylinder #: ALM052501

Test Sequence	Date (m/d/y)	Time (hr:min)	Reference Value (ppm)	Analyzer Response (ppm)	Efficiency (%)	Absolute Deviation (%)
Low	9/3/96	17:08	0	-0.03		
High	9/3/96	17:18	89.12	89.34		
NO ₂ #1	9/3/96	17:31	89.34	83.39	93.3%	0.8%
NO ₂ #2	9/3/96	17:33	89.34	84.07	94.1%	0.1%
NO ₂ #3	9/3/96	17:36	89.34	84.91	95.0%	0.9%
Low	9/3/96	17:36	0	0.16		
High	9/3/96	17:42	89.12	89.14		

Average NO₂ Response:

84.1

Average (uncorrected) Efficiency:

94.2%

Corrected Efficiency:

94.0% PASS

(>90% requirement)

Mean Deviation:

0.6% PASS

(<5% requirement)

中国 中国 ٠., 10AR 27 501) BACK BA 1: 11. 17:42 L'EPPA ! 02441 15.62% 15.57% C02 C02av9 0.00: HOw 14000 SPAN 0.012 1 aviano 14. pp พลมบลบ 02 | Sep | 15.46× D: 02% 0.00% NOx Tean Cda | C021092 9. acz C0av92 102 ทุกมีปลับ 021 Sep 45% cost 02a441 002a442 0.#0% | 1.4¤¤mi 11 11 co 120.0 манфац Sep. 05.96 C02 C02nva C0cva230 0. | 5<u>89</u>8 1.3000 0.00= 0.00= 1.455* nin -02 5.75×1 024 าตอลงโรว TARR 01 9. 00mi 60 CD24942 10 106 Sept 03.96 17:33 MAHUAU 02 02 02 02 httlidd 11/11/1 5.375 5.248 0.00% C02 C02ava 0.00: 0.00: 1.4eps KBH LevipUD 04. 078 an #2-1 0 3 a u = 2 15.24 ,-,-, HANUAL NOX Ocus 5 34× 5 22× 0 0 0 0× C02. E02ava D 00% 0. lann $\cdot + |\cdot|_{1}$ 021 020 91 Jaari !!! 17:31 0.00% Манфац Sep. 111 <u>c</u>02 5.30x Mriv 1202 0.00% 15.21= C02av9 COcual 02au=2 02g491 0024v42 0.00% COnv92 . . . co NAHIDAL 02 1 Nax DI GON Corcel Tilligh e.uax CD24092 111 $\rightarrow 11$ 20.00 25'. 80 602 00 +5 020001 5.1 340.03 17109 17:08 €0 | **02**au **∓**2 Sep. 13. 96 Manual! C02 C02 C0cv92 NOx 02a+91 002av42 13.95x 0.01x भववड़े | | | Claurel

14952 (TVL 2

3 A COUNTY OF THE PARTY OF

CARNOT SPAN GAS RECORD

CLIENT/LOCATION: ARMSTRONG WORLD INDUSTRIES, INC.

RECLAIM LARGE SOURCE COMPLIANCE

DATE: 9/26/96

BY: BAF

	MID SPAN CYLINDER		HIGH SPA	N CYLINDER
	CYLINDER NO. CONCENTRATION		CYLINDER NO.	CONCENTRATION
ZERO	AAL15800			
O_2	ALM055244	5.526	ALM006096	9.024
CO ₂	ALM055244	14.99	ALM006096	22.4
NO _x	ALM045897	10.99	ALM002366	22.72
NO _x	ALM002366	22.72	ALM062183	51.12
NO _x				***************************************

PRE-TEST INSTRUMENT CALIBRATION ERROR

	ANALYZER					
	O ₂	CO ₂	NO_x	NO _x	NO_x	STATUS
Analyzer Range	10	25	25	55	0	999/309/30 1/20 1/20/20/20/20/20/20/20/20/20/20/20/20/20/
Zero Gas Value	0	0	0	0	38 800000000000000000000000000000000000	>>>
Analyzer Reads	0.07	0.00	0.01	-0.02		
Error (% of scale)	0.7%	0.0%	0.0%	0.0%		PASS
High Gas Value	9.024	22.4	22.72	51.12		
Analyzer Reads	9.02	22.38	22.62	51.08		
Error (% of scale)	0.0%	-0.1%	-0.4%	-0.1%		PASS
Mid Gas Value	5.526	14.99	10.99	22.72		**
Analyzer Reads	5.55	14.97	11.05	22.70		The National State of the State
Error (% of scale)	0.2%	-0.1%	0.2%	0.0%		PASS

POST-TEST INSTRUMENT CALIBRATION ERROR

		ANALYZER				
	O ₂	CO ₂	NO _x	NO _x	NO_x	STATUS
Analyzer Range	10	25	0	55	0	***
Zero Gas Value	0	0	2.	0	***************************************	
Analyzer Reads	0.03	0.01	1,487	-0.20		
Error (% of scale)	0.3%	0.0%	37/	-0.4%		PASS
High Gas Value	9.024	22.4	<u>k.</u>	51.12	Mådifficialfadblikabassasbassas	
Analyzer Reads	9.01	22.22	3/	51.65		
Error (% of scale)	-0.1%	-0.7%	11.	1.0%		PASS
Mid Gas Value	5.526	14.99	764/	22.72	000000000000000000000000000000000000000	*-
Analyzer Reads	5.56	14.97	3/	23.02		
Error (% of scale)	0.3%	-0.1%	W	0.5%		PASS

% ERROR CALCULATION:

(AS FOUND - ACTUAL VALUE OF SPAN)/RANGE * 100% ALLOWABLE DEVIATION IS 2% OF FULL SCALE (2 SQUARES ON STRIPCHART)

AL

SUITE 110

Scott Specialty Gases, Inc.

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411 (909) 887-2571 Fax: (909) 887-0549

CERTIFICATE OF ANALYSIS

PROJECT #: 02-37526-001 CARNOT

PO#: 11-0283

ITEM #: 0201811 15991 RED HILL AVE

DATE: 4/25/95

CA 92680 TUSTIN

CYLINDER #: AAL15800

FILL PRESSURE: 2200 PSIG

CAS# 7727-37-9 PURE MATERIAL: NITROGEN

GRADE: U Z A M

PURITY: 99.999%

	MAXIMUM	ACTUAL
IMPURITY	CONCENTRATIONS	CONCENTRATIONS
THC	0.05 PPM	<0.05 PPM
CO	0.05 PPM	<0.05 PPM
02	2 PPM	<2 PPM
· CO2	1 PPM	<1 PPM
NOX	0.005 PPM	<0.005 PPM
SF6	0.001 PPM	<0.001 PPM
S02	0.005 PPM	<0.005 PPM
H2O	4 PPM	<4 PPM

2200 PSIG 4/25/95

QC BATCH : 0522

Scott Specialty Gases

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 887-2571

FAX: (909) 887-0549

CERTIFICATE OF ANALYSIS: EPA Protocol Gas

Customer CARNOT 15991 RED HILL AVE SUITE 110

TUSTIN, CA 92680

Assay Laboratory Scott Specialty Gases 2600 Cajon Boulevard San Bernardino, CA 92411 Purchase Order: 11-1402 Scott Project #: 46984.02A

CGA Fitting: 590

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability for Assay and Certification of Gaseous Calibration Standards; Procedure G1; September 1993.

Cylinder Number: Cylinder Pressure:

ALM006096 1900 PSIG

Certification Date: Previous Certification Date: None

05/29/96

05/29/99 Exp. Date:

Bin No .:

ANALYZED CYLINDER

Components CARBON DIOXIDE OXYGEN

Certified Concentration

22.4 % 9.024% Analytical Uncertainty* ±2% NIST TRACEABLE

±1% NIST TRACEABLE

Nitrogen

Balance Gas

REFERENCE STANDARD

Type/SRM Sample No. T. NTRM 18000 CRM 2659

Expiration Date 12/21/96

10/01/96

Cylinder Number ALM047718 ALM017721

Concentration 17.95% CO2/N2 20.63% O2/N2

INSTRUMENTATION

Instrument/Model/Serial# Horiba/OPE-135C/565607122

Horiba/OPE-335/850557042

Last Date Calibrated

05/29/96 05/23/96 NDIR

Analytical Principle Magnetopneumatic

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

Components First Triad Analysis CARBON DIOXIDE

Date: 05/29/96 Response Units: mv R1=92.3 T1=70.1 Z1 = 0.00

R2=92.3 Z2=0.00 T2=70.1 R3=92.3 Z3=0.00 T3=70.1 Avg. Conc. of Cust Cyl. 22.4%

Second Triad Analysis

Date:	Respo	onse Units:	mv
Z1=	R1=	T1=	
R2=	Z2=	T2=	
Z3=	T3=	R3=	
Avg. Con	c. of Cust Cyl.		

Calibration Curve

Concentration=Ax3+Bx2+Cx+Dx B=-0 00006681 A=0.00001001 D=-0.1761 C=0.1178

OXYGEN

لاستان بالتبعيدة السا

Date: 05/29/9	96 Respons	e Units: mv
Z1=0.00	R1=82.4	T1=36.1
R2=82.4	Z2=0.00	T2=36.1
Z3=0.00	T3=36.1	R3=82.4
Avg. Conc. of	f Cust Cyl.	9.024%

Date:	Respo	Response Units:	
Z1=	R1=	T1=	
R2=	Z2=	T2=	
Z3=	T3=	R3=	
Avg. Con	c. of Cust Cyl.		

Concentration=/	¥x+Β	
A=0.2501	B=-0.003409	
-0 00000		

I	Date:	Respo	nse Units:	mγ
	Date: Z1= R2= Z3=	R1=	T1=	
	R2=	Z2=	T2=	
	Z3=	T3=	R3=	
-	Avg. Conc.	of Cust Cyl.		

Date:	Resp	onse Units:	mv
Z1=	R1≍	T1=	
R2=	Z2=	T 2=	
Z3=	T3=	R3=	
Avg. Cond	c. of Cust Cyl	•	

Concentration=	

Special Notes: Do not use when cylinder pressure is below 150 psig.

ATTN: RICK MADRIGAL

^{*}Analytical uncertainty is inclusive of usual known error sources which at least include the precision of the measurment processes.

Scott Specialty Gases

RECEIVED

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 887-2571

FAX: (909) 8113642

CERTIFICATE OF ANALYSIS: EPA Protocol Gas

Customer CARNOT 15991 RED HILL AVE SUITE 110

TUSTIN, CA 92680

Assay Laboratory Scott Specialty Gases 2600 Cajon Boulevard San Bernardino, CA 92411 Purchase Order: 11-1655 Scott Project #: 48721.03A **CGA Fitting:**

590

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability for Assay and Certification of Gaseous Calibration Standards; Procedure G1; September 1993.

Cylinder Number: Cylinder Pressure: ALM055244 1900 PSIG

Certification Date: Previous Certification Date: None

08/09/96

08/09/99 Exp. Date:

Bin No .:

Analytical Uncertainty*

ANALYZED CYLINDER

Components CARBON DIOXIDE ÖXYGEN

Certified Concentration 14.99%

±1% NIST TRACEABLE ±1% NIST TRACEABLE

Nitrogen

Balance Gas

5.526%

*Analytical uncertainty is inclusive of usual known error sources which at least include the precision of the measurment processes

REFERENCE STANDARD

Type/SRM Sample No. NTRM 18000 NTRM 2658

Expiration Date 12/21/96

11/23/96

Cylinder Number ALM047718 ALM03174

Concentration 17.95% CO2/N2 9.68% O2/N2

INSTRUMENTATION

Instrument/Model/Serial# Horiba/OPE-135C/56553902 Horiba/OPE-335/850557042

Last Date Calibrated

07/09/96 08/09/96 **Analytical Principle**

Magnetopneumatic

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

Components

First Triad Analysis

Second Triad Analysis

Calibration	Curve

CARBON DIOXIDE

Date: 08/09/96 Response Units: mv R1=92.2 T1=83.4 Z1=0.00Z2=0.00 T2=83.4 R2=92.2 R3=92.2 T3=83.4 Z3=0.00 14.99% Avg. Conc. of Cust Cyl.

Response Units: my Date: Z1= R1= T1= R2≃ T2= Z2= T3= R3⊐ Avg. Conc. of Cust Cyl.

Concentration=Ax3+Bx2+Cx+Dx A=.00001000 8=.00006680 C=.1178 D= 1760 r=0 99999

OXYGEN

Date: 08/09/96 Response Units: mv R1=96.9 T1=55.3 71=0.00 R2=96 9 Z2=0.00 Z3=0.00 T3=55.3 R3=96.9 Avg. Conc. of Cust Cyl. 5.526%

Response Units: mv Date: Z1= R1= T1= R2= T2= Z2= R3= T3= Avg. Conc. of Cust Cyl.

Concentration=Ax+B B = 002204A= 09997 -0.99999

Response Units: mv Date Tt= Z1= T2= R2= Z2= R3= T3= 73= Avg. Conc. of Cust Cyl.

Date: Response Units: mv Z1= T1= R2= Z2= T2= T3= Avg. Conc. of Cust Cyl.

Concentration=

Special Notes: Do not use when cylinder pressure is below 150 psig.

Reviewed and Approved by:

Scott Specialty Gases, Inc.

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 887-2571 FAX: (909) 887-0549

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer CARNOT 15991 RED HILL AVE SUITE 110 **TUSTIN, CA 92680**

PROJECT # 41344.02B 11.0901

Assay Laboratory **Scott Specialty Gases** 2600 Cajon Boulevard San Bernardino, CA 92411

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay and Certification of Gaseous Calibration Standards; Procedure GI; September 1993.

Cylinder Number Cylinder Pressure ALM045897 **2000 PSIG** Certification Date

09/25/95

Exp. Date

09/25/97

ANALYZED CYLINDER

Components (NITRÍC OXIDE) TOTAL OXIDES OF NITROGEN **Certified Concentration** 10.66 PPM

10.99 PPM

Balance Gas

Analytical Uncertainty*

±1% NIST TRACEABLE REFERENCE VALUE ONLY

(Nitrogen)

Do not use when cylinder pressure is below 150 psig.

Analytical uncertainty is inclusive of usual known error sources which at least includes reference standard error & precision of the measurement processes.

REFERENCE STANDARD

Type/SRM Sample No. NTRM 2629

Expiration Date 11/21/96

Cylinder Number ALM008353

Concentration

19.86 PPM NO/N2

INSTRUMENTATION

Instrument/Model/Serial # TECO / 10AR/#10

Last Date Calibrated 09/28/95

Analytical Principle Chemi-Luminescent

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

Components NITRIC OXIDE

First Triad Analysis

Date:	07117173		zez honze	ouns.	TYE A	
Z1=	24.8	R1=	23592	T1=	12505	
R2=	23578	Z2=	30.5	T2=	12638	
Z3=	28.0	T3=	12663	R3=	23575	

T3= 12663 Avg. Conc. of Cust Cyl. 10.64 PPM

Date:	Response Units: mv			
ZI=	RI=	T1=		
R2≔	Z2=	T2=		
Z3=	T3=	R3=		
A . C				

Date:	Response Units:mv		
Z1=	RI=	T1=	
Z1= R2=	Z2 =	T2=	
Z3=	T3=	R3=	
Avg. Conc. of Cust Cyl.			

Second Triad Analysis

Date:	09/25/95	R	esponse	Units: mv
Zi≖	0.00	R1=	20.11	T1= 10.92
R2=	20.13	Z 2=	0.09	T2= 10.96
77	0.00	735-7	10.03	D2 30 00

T3= 10.92 10.69 PPM Avg. Conc. of Cust Cyl.

Date:	Respo	nse Units: mv		
Z1=	R1=	T1=		
R2=	Z.2 =	T2=		
Z3=	T3=	. R3=		
Avg. Conc. of Cust Cyl.				

Date:	Respo	nse Units:mv
Z1=	R1=	T1=
R2=	Z2=	T2=
Z3=	T3=	R3=
Avg. Conc.	of Cust Cyl.	

Calibration Curve

Concentratio	n=	***************************************	***************************************
	-		

Concentration=

Special Notes:

Scott Specialty Gases

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 887-2571

FAX: (909) 887-0549

CERTIFICATE OF ANALYSIS: EPA Protocol Gas

Customer CARNOT

15991 RED HILL AVE SUITE 110

TUSTIN, CA 92680

Assay Laboratory Scott Specialty Gases 2600 Cajon Boulevard San Bernardino, CA 92411

Purchase Order: 11-1402 Scott Project #:

0246984.04A

CGA Fitting: 660

ANALYTICAL INFORMATION

ल्हाइन्द्र This certification was performed according to EPA Traceability for Assay and Certification of Gaseous Calibration Standards; Procedure G1; September 1993.

Cylinder Number:

ALM002366

Certification Date:

06/12/96

Exp. Date:

06/12/98

Cylinder Pressure:

2000 PSIG

Previous Certification Date: None

Bin No .:

ANALYZED CYLINDER

Components NITRIC OXIDE Certified Concentration

22.37 PPM

Analytical Uncertainty*

±1% NIST TRACEABLE

TOTAL OXIDES OF NITROGEN

Nitrogen (Oxygen Free)

22.72 PPM

REFERENCE VALUE ONLY

Balance Gas

REFERENCE STANDARD

Type/SRM Sample No. NTRM 0025

Expiration Date 04/05/97

Cylinder Number ALM042674

Concentration 24.35 PPM NO/N2

<u>INSTRUMENTATION</u> Instrument/Model/Serial# TECO/16 AR/14853-151

Last Date Calibrated

06/04/96

Analytical Principle Chemiluminescence

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

22 382

Components NITRIC OXIDE

First Triad Analysis

Date: 06/05/96 Response Units: mv Z1=0.0041 R1=0.9790 T1=0.8866. Z2=0.0025 T2=0.8870 R2=0.9774 Z3=0.0018 T3=0.8890 R3=0.9789

Avg. Conc. of Cust Cyl.

Second Triad Analysis

Date: 06/12/96 Response Units: mv Z1=0.0004 R1=0.9793 T1=0.8874

R2=0.9757 Z2=0.0022 T2=0.8875 Z3=0.0020 T3=0.8842 R3=0.9774

22.354

Avg. Conc. of Cust Cyl.

Calibration Curve

Concentration=Ax+8 A=25 040 B=01586

r=0.99999

Response Units: mv Date: Z1= R1= T1= R2= Z2= T2= R3= T3=

Avg. Conc. of Cust Cyl.

- Response Units: mv Z1= R1= T1= R2= 72= T2= T3=

Avg. Conc. of Cust Cyl.

Avg. Conc. of Cust Cyl.

Concentration=

Response Units: mv Date: Z1= R1= T1= T2= R2= Z2= Z3= T3= R3= Avg. Conc. of Cust Cyl.

Response Units: mv Date: R1= T1= R2= Z2= T2= Z3= T3= R3=

Concentration=

Special Notes: Do not use when cylinder pressure is below 150 psig

Reviewed and Approved by:

^{*}Analytical uncertainty is inclusive of usual known error sources which at least include the precision of the measurment processes.

Scott Specialty Gases

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 887-2571

FAX: (909) 887-0549

CERTIFICATE OF ANALYSIS: EPA Protocol Gas

Customer CARNOT 15991 RED HILL AVE SUITE 110 **TUSTIN, CA 92680**

Assay Laboratory Scott Specialty Gases 2600 Cajon Boulevard San Bernardino, CA 92411 Purchase Order: 11-1655 Scott Project #: 48721.04B CGA Fitting: 660

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability for Assay and Certification of Gaseous Calibration Standards; Procedure G1; September 1993.

Cylinder Number:

ALM062183

Certification Date:

05/31/96

Exp. Date:

05/31/98

Cylinder Pressure:

2000 PSIG

Previous Certification Date: None

Bin No .:

ANALYZED CYLINDER

Components NITRIC OXIDE Certified Concentration

Analytical Uncertainty*

49.38 PPM

±1% NIST TRACEABLE

TOTAL OXIDES OF NITROGEN

51.12 PPM

REFERENCE VALUE ONLY

Nitrogen (Oxygen Free)

Balance Gas

REFERENCE STANDARD

Type/SRM Sample No. NTRM 1683

Expiration Date 12/05/97

Cylinder Number ALM056919

Concentration

49.4 PPM NO/N2

INSTRUMENTATION Instrument/Model/Serial#

TECO/10 AR/14853-151

Last Date Calibrated

05/31/96

Analytical Principle Chemiluminescence

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

Components

First Triad Analysis

Second Triad Analysis

Calibration Curve

Date: 05/21/96 Response Units: mv Z1=0.0027 R1=0.4949 T1=0.4975 R2=0.4961 Z2=0.0014 T2=0.4949 Z3=0.0009 T3=0,4946 R3=0.4948 Avg. Conc. of Cust Cyl. 49.527 PPM

Date: 05/31/96 Response Units: mv Z1=0,0018 R1=0.9444 T1=0.4916 R2=0.9411 Z2=0.0009 T2=0.4898 Z3=-0.0001 T3=0.4926 R3=0,9443 Avg. Conc. of Cust Cyl. 49.225 PPM Concentration=Ax+B A=100.07 8=0.05867

r=0.99999

Date:	Resp	onse Units:	mv
Z1=	R1=	T1=	•
R2=	Z2 =	T2=	
Z3=	T3=	R3=	
Aug Can	a as course cos		

Date:	Respo	Response Units:				
Z1=	R1=	T1=				
R2=	Z2=	T2=				
Z3=	T3=	R3=				
Avg. Cor	nc. of Cust Cyl.					

Consoning and in		
\$	7	*

Date:	Resp	Response Units:				
Z1=	R1=	T1=				
R2=	Z2=	T2=				
Z3=	T3=	R3=				
Avg. Con-	c. of Cust Cyl					

Date:	Resp	mν	
Z1=	R1≃	T1=	
R2=	Z2=	T2=	
Z3=	T3=	R3=	•
Avg. Con	c. of Cust Cyl.		

Concentration=

Special Notes: Do not use when cylinder pressure is below 150 psig.

Reviewed and Approved by:

^{*}Analytical uncertainty is inclusive of usual known error sources which at least include the precision of the measurment processes.

ES-19

CARNOT DRY GAS METER CALIBRATION

LONG FORM

	FIELD METER INFO. TEST METER INFO. ALLOWABLE CRITERIA						TEST METER INFO.				
FIELD GAS	METER II) :	ES-19	TEST METER ID. APEX RENTAL SER # 1039845			INDIVIDUAL Yd=0.01				
CALIBRAT	ION DATE	•	7/18/96	TEST MET	ER LAST C	· ·	1/96		Yd <=2%*C	OF GEN AV	G.
FIELD MET	ER LAST	Yd:	0.9873	TEST MET	ER Yd FAC	TOR	0.991854		0.97 <avg< td=""><td>Yd>1.03</td><td></td></avg<>	Yd>1.03	
BAROMET	BAROMETRIC PRESSURE: 30.02			LEAK CHE	CK IN/OU	Т	ок		H@<=0.2 0	OF AVG. H(@
CALIBRAT	ION BY:		ms	DATA INPU	JT BY		MS				
	FIELD	METER			TEST	METER	Standard Communication of Standard Communication of Standard Communication Communicati		RESULTS		
VOLUME	ТЕМР	DELTA H	TIME	VOLUME	ТЕМР.	PRESS.	Q	Y	H@	AVE.Y	AVG. H@
cu.ft.	ave'F	"H2O	min.	cu.ft.	'F	"H20	cfin		İ		
5.188	91.0	0.2	18	5.076	70	-0.01	0.288	1.0084	1.386		
5.492	92.0	0.2	19	5.356	70	-0.01	0.289	1.0069	1.385	1.0070	1.3856
5.491	90.8	0.2	19	5.36	70	-0.01	0.289	1.0057	1.386		
5.3	72.5	0.8	10	5.375	67	-0.025	0.530	1.0143	1.566		
5.337	78.0	0.8	10	5.373	67.5	-0.025	0.534	1.0164	1.554	1.0161	1.5542
5.922	84.3	0.8	Н	5.905	68	-0.025	0.538	1.0175	1.542		
5.97	86.3		10	5.917	69	-0.035	0.597	1.0126	1.588		
5.964	92.0	1	10	5.89	69.5	-0.035	0.596	1.0186	1.589	1.0152	1.5898
5.984	91.8	1	10	5.893	70	-0.035	0.598	1.0144	1.591		
6.652	91.8	2	8	6.574	69	-0.06	0.832	1.0173	1.639		
5.765	91.0	2	7	5.7	68	-0.06	0.824	1.0183	1.665	1.0175	1.6492
6.628	89.0	2	8	6.581	69	-0.06	0.829	1.0169	1.644		
8.596	89.9	3.5	8	8.625	69	-0.1	1.075	1.0255	1.684		
5.377	90.3	3.5	5	5.386	69	-0.1	1.075	1.0245	1.686	1.0262	1.6838
5.378	93.3	3.5	5	5.38	69	-0.1	1.076	1.0287	1.681		

5 CU, FT. /RUN IS SATISFIED

PASS-INDIVIDUAL Yd VALUES MEET (0.01) LIMITS PASS -INDIVIDUAL Yd VALUES WITHIN (.98/L.03) LIMITS PASS - POST TEST Yd WITHIN LIMITS

PASS- DELTA H@ VALUES WITHIN ALLOWABLE (.2) LIMITS

AVERAGE Yd =

AVERAGE DELTA H@ =

1.0164 1.57

AVERAGE cfm @^H=1.0 =

0.597

		MENSIONAL CALIBRATION
Pito	t Tube I.D. / 0 ^C /	Date 7- (9-85 By) allhy
⁰ t		.520 PB · 522
(a)	Face opening plane angle =	90 deg A B (Y/N)
(b)	Face opening planes parallel to longitudinal axis	(Y/N) A B Y
(c)	Both legs equal length and centerline coincident	View A B (Y/N)

Properly constructed Type S pitot tube, shown in: (a) end view; face opening planes perpendicular to transverse axis; (b) top view; face opening planes parallel to longitudinal axis; (c) side view; both legs of equal length and centerlines coincident, when viewed from both sides. Baseline coefficient values of 0.84 may be assigned to pitot tubes constructed this way.

Appendix B.4 Statement of Carnot's Compliance With SCAQMD Rule 304(k)

STATEMENT OF INDEPENDENT LABORATORY COMPLIANCE WITH SCAQMD RULE 304(k)

Carnot is an employee owned and operated company incorporated in the state of California. Carnot is certified by the SCAQMD as an independent testing laboratory and is in no way affiliated with Armstrong World Industries, Inc., except as a hired consultant.

- 1) Carnot has no financial interest in Armstrong World Industries, Inc. or the facility being tested, or in the parent company or any subsidiary thereof;
- 2) Armstrong World Industries, Inc. or the facility being tested, its parent company or any subsidiary thereof, has no financial interest in Carnot;
- Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere or parent company or any subsidiary thereof, has no financial interest in Carnot; and
- 4) Carnot has no partnership with, owns or is owned by, in part or in full, the contractor who provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems for Armstrong World Industries, Inc.

Robert A. Finken

Vice President

Southern California Measurement Division

Date: 5/24/96

Appendix B.5 Certification of No Exceptions to Standard Protocol

CERTIFICATION of NO EXCEPTIONS

RECEIVED OCT - 2 1995 CARACT

Facility ID	012155
Facility Name	ARMSTRONG WORLD INDUSTRIES, INC
Equipment Address	5037 PATATA STREET
	SOUTH GATE, CA 90280-3555
Equipment Tested	NATURAL GAS BOILER
Device ID	D156
Standard Protocol Used	SP-B-001

I hereby certify that no exceptions were made to the source test methods as written in the above referenced standard protocol used to source test the above referenced equipment for compliance with Rule 2012.

Facility Representative Win

Signature

Date 10/1/96

WILLIAM SCOTT WOYSHNER ENVIRONMENTAL SPECIALIST

(213) 562-7227

APPENDIX C REFERENCE METHOD DATA

Appendix C.1
Sample Location

₹

SAMPLE POINT LOCATION DATA SCAQMD METHOD 1.1

Location: ARMSTRONO Unit: PROCESS STI	WORLD INDUSTRIES, INC. EAM BOILER	Date: By:	9/26/96 B. Fangmeie	T	9944999-1992	
Stack Area (ft^2):	9.271	DISTU	JRBANCES:	FEET	INCHES	DIAMETERS
Stack Depth (in.):	30.00	Do	wnstream:	0	71.375	2.0
Stack Height (in.):	44.50) U	pstream:	0	17.625	0.5
Equivalent Diameter (in)	35.84				·	
Coupling Length (in.):	5.00					

(1) From SCAQMD Method 1.1

Appendix C.2

Carnot CEMS Data

CARNOT SCAQMD METHOD 100.1 TEST DATA

Client: ARMSTRONG WORLD IND.

Condition: 6000 pph steam

Location: SOUTH GATE

Date: 9/26/96

Unit: PROCESS STEAM BOILER

Operator: BAF

Test Number: 1-CEM

Test Location: DUCT TO STACK

				Analyzer Values					
			O ₂	CO ₂	NO _x	CO	SO ₂	STATUS	
Analyzer Sp	an Range	NO-STATE AND ADDRESS OF THE PARTY OF THE PAR	10	25	55			***************************************	
Units		%	%	ppm	ppm	ppm			
Span Calibr	ation Gas Va	lue	5.026	14.99	22.72				
				As Four	nd Analyzer F	Readings	· · · · · · · · · · · · · · · · · · ·		
Zero			0.07	0.00	-0.02			***************************************	
Span			5.55	14.97	22.70				
***************************************	***************************************			Pre-	Test System	Bias			
System Bias	s Zero		0.05	0.03	0.05				
Zero Bias, 9	6 of Span Ra	nge	-0.2%	0.1%	0.1%			PASS	
System Bias	s Span		5.57	14.96	22.42				
System Bias	s, % of Span	Range	0.2%	0.0%	-0.5%			PASS	
Sample	Ti	me			Raw Test Dat	a	in the character of the		
Point	Start	Stop	O_2	CO_2	NO _x	CO	SO_2		
A-3	13:00	13:05	7.24	7.76	24.23	***************************************			
2	13:05	13:10	6.94	7.94	22.88				
1	13:10	13:15	6.72	8.07	22.98	**************************************	THE PERSON NAMED IN COLUMN NAM		
B-3	13:15	13:20	7.25	7.74	23.37	***************************************	***************************************		
2	13:20	13:25	6.62	8.11	23.00				
l	13:25	13:30	6.57	8.14	23.32				
C-3	13:30	13:35	6.55	8.14	22.50				
2	13:35	13:40	7.01	7.84	21.56				
1	13:40	13:45	7.36	7.69	23.49				
D-3	13:45	13:50	6.41	8.23	22.26				
2	13:50	13:55	6.45	8.19	21.95				
1	13:55	14:00	6.97	7.90	23.40				
di-									
							Wanted and do not not not not not not not not not no		
***************************************	***************************************	1889 <u>aanaaanaanaanaanaanaanaanaanaanaanaanaa</u>		***************************************					
····					Test System	Bias			
System Bias	Zero		0.03	0.03	0.02				
	6 of Span Ra	nge	-0.4%	0.1%	0.1%			PASS	
System Bias			5.53	14.98	22.56				
System Bias	s, % of Span	Range	-0.2%	0.0%	-0.3%			PASS	
		-1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		·	Drift				
Zero Drift, % of Span Range			-0.2%	0.0%	-0.1%			PASS	
Span Drift, % of Span Range		ange	-0.4%	0.1%	0.3%			PASS	
					L	nananadiina Tistoo Tisto Tistoo Tisto	~		
		·	<u> </u>		ary of Test R		, , , , , , , , , , , , , , , , , , ,		
	······································	*	O_2	CO ₂	NO _x	CO	SO ₂		
Raw Averag		·	6.84	7.98	22.91		***************************************		
Corrected Average			6.20	7.98	23.15				

Appendix C.3 Fuel Meter Relative Accuracy Audit Calculations

CARNOT

RECLAIM LARGE SOURCE COMPLIANCE TESTING FUEL METER RELATIVE ACCURACY AUDIT DATA AND WORKSHEET

Test:	RAA		METHOD 4.1 DATA							
Station:	AWI			Dry G	as Meter			Impi	ngers	
Unit:	Process Steam	Boiler	Time	Vol.	$T_m(in)$	$T_m(out)$	#/Matl.	End	Start	Difference
Performed By:	BAF, RKI	М	0	417.928	71	71	1/H2O	782.7	681.6	101.1
Date:	9/26/96				91	73	2/H2O	558.0	553.0	5.0
Start/Stop Time:	1300-140	0			101	81	3/Empty	499.3	497.6	1.7
Test Condition:	6000 pph ste	am	60	453.174	106	86	4/S.G.	847.2	837.2	10.0
Barom. Pressure:	29.51		Total	35.246		85.0	Total			117.8
Pstack:	-0.48	iwg								
Pstack:	29.47	"Hg]							
O ₂ (from Test 1-CEM)	6.20	%			Meter Y _{d:}		1.0164			
CO2 (from Test 1-CEM	1): 7.98	%			Meter Pressi	ıre:	1.00	iwg		
H₂O:	13.9	%			Sample Volu	ıme:	34.314	dscf		
MW:	27.92	lb/lb-mol			H ₂ O Volume	e :	5.560	scf		
Cp:	0.84				Moisture Co	ntent:	13.9	%		
Tref:	68	°F								
Stack Area:	9.271	ft²								
				A CENTRAL CO.	3 4 V3 4 P3 1					

METHOD 2.1 DATA										
	1A-RAA			1B-RAA			1C-RAA			
	dP	Angle	Temp.	dP	Angle	Temp.	dP	Angle	Temp.	
Point	(in. H ₂ O)	(degrees)	°F	(in. H ₂ O)	(degrees)	°F	(in. H ₂ O)	(degrees)	°F	
D-4	0.015	0	379	0.028	0	308	0.005	0	355	
3	0.012	0	382	0.008	0	322	0.007	0	355	
2	0.016	0	352	0.010	0	335	0.010	0	349	
l	0.023	0	320	0.007	0	335	0.008	0	333	
C-4	0.023	0	406	0.018	0	346	0.010	0	351	
3	0.019	0	410	0.008	0	345	0.006	0	357	
2	0.017	0	410	0.006	0	352	0.005	0	360	
1	0.030	0	390	0.009	0	355	0.008	0	361	
B-4	0.026	0	403	0.010	0	344	0.005	0	336	
3,	0.012	0	419	0.015	0	357	0.011	0	349	
2	0.011	0	433	0.015	0	363	0.011	0	359	
1	0.016	0	432	0.012	0	364	0.008	0	362	
A-4	0.013	0	410	0.006	0	341	0.006	0	338	
3	0.012	0	404	0.010	0	344	0.007	0	343	
2	0.012	0	403	0.010	0	346	0.010	0	353	
1	0.050	0	341	0.012	0	348	0.011	0	360	
Average	0.0183	0.0	393.4	0.0110	0.0	344.1	0.0078	0.0	351.3	
	17-11607		0.07	N7-1		Ø 42	11.1 11.00			
	Velocity, ft/sec: 9.87			Velocity, ft/sec: 7.43 Axial Velocity, ft/sec: 7.43		Velocity, ft/s	6.31			
	Axial Veloci	-	9.87	1	Axial Velocity, ft/sec:		Axial Veloci	6.31		
	Stack Flow F	-	5,488.2	Stack Flow R		4,134.1	Stack Flow F	3,507.9		
	Stack Flow F	(ate, dscim:	2,878.7	Stack Flow F	tate, dscfm:	2,301.4	Stack Flow F	kate, dscfm:	1,935.4	

FUEL METER RELATIVE ACCURACY AUDIT RESULTS

	Measured Flow (2.1 and 4.1 Data)	Calculated Flow (F-Facto	(F-Factor)	
Test No.	(dscfm)	(dscfm) , 4	rel	
1A-RAA	2878.7 -	1322.8 🗸 /6	11.7	
1B-RAA	2301.4	1372.5	5.5	
1C-RAA	1935.4	1338.1 /	22,9	
Average	2371.8	1344(4		

RELATIVE ACCURACY:

-43.3%

 $A = \frac{\overline{C} - \overline{A}}{\overline{A}}$

Appendix C.4 Fuel Meter Relative Accuracy Audit Velocity Data

CARNOT **VELOCITY TRAVERSE DATA**

CLIENT/LOCATION: ARMSTRONG WORLD TND. SAMPLE LOCATION: DUCT TO STACK UNIT NO.: PROJECT STEAM POLLER TEST DESCRIPTION: RAA VEL TRAVERSE BARO. PRESS. (in. Hg): <u>39,51</u>

 $V_{s} = 2.90 \quad Cp \quad \sqrt{\Delta P} \quad T_{s} \quad \sqrt{\frac{29.92}{P_{s}}} \quad X \quad \frac{28.95}{MW} \qquad T_{s} = Stack Temp. \, ^{\circ}F + 460$ $Avg. \Delta P = \left(\frac{\sum \sqrt{\Delta P}}{n}\right)^{2} \qquad P_{s} = BP + \frac{Static (in.)}{13.6}$

DATE: 96696 PITOT TUBE COEFFICIENT(C,): 0.84 PITOT ID NO .: 104 PITOT LEAK CHECK:____ TC READOUT I.D.:

 $P_s = BP + \frac{Static (in. H_2O)}{13.6}$

Test No:	rissoli i raccouraceur prominina relialió	Static	Pressure (in. H ₂ 0	Test No: Static Pressure (in. H ₂ O):						
1A-RA	A		-0.48			RAA		-0.48		
TRAVERSE P		SE POINT	VELOCITY HEAD	GAS TEMP	Opin Harait Lucus - Campi , Lange engage	TRAVERS	E POINT	VELOCITY HEAD	GAS TEMP	
TIME	PORT	POINT	in. H₂O, ΔP	۰F	TIME	PORT	POINT	in. H₂O, ∆P	°F	
1305	D	4	0.015	379	134	0	4	0.028	309	
School HARDAN School Hardan Waldengappe		3	0.012	382		,	3	6.40 B. 85	3/3	
r		2	0.016	352			2	0.010	335	
	-	1	0.073	320 .			1	0.007	335	
	C	4	0.073	406		C	4	0.018	346	
		3	0.019	410			3	0,008	345	
		2	0.017	410			2	0.006	352	
		1	0.030	盘·340			1	0.069	355	
	13	4	0,076	403		B	4	A.OID.	344	
		3	0.012	419			3	0.015	357	
		J	0.011	433			a	0.015	3633	
		1	0.016	432			1	0.012	364	
	A	4	0.013	410		A	4	0.006	341	
		3	0.012	409			3	0,010	344	
		a	0.112	403			2	0.010	346	
1316		1	0.050	341	1331		1	0.012	348	
J										
			10010-	000 0	Avg.			2		
/g.			0.0183	1315.4	II			00110	344.1	

CARNOT VELOCITY TRAVERSE DATA

CLIENT/LOCATION: APA-TRING UBRID TAD.

SAMPLE LOCATION: DUCT TO STACK

UNIT NO.: PROFES STEAM BOILER.

TEST DESCRIPTION: PAA VELOCITY TRAVERSE PITOT ID NO.: \[\sum 0 \]

BARO. PRESS. (in. Hg): \[\frac{79.92}{P_z} \] $V_z = 2.90 \ Cp \ \sqrt{\Delta P} \ T_z \ \sqrt{\frac{29.92}{P_z}} \ X \ \frac{28.95}{MW}$ $V_z = BP + \frac{Static (in. H_2O)}{13.6}$

Test No:		Static	Pressure (in. H ₂ 0	O):	est No:	>	Statio	: Pressure (in. H _z	0):
1C-RA	A		-0.48	3		,			/
` `	TRAVERS	E POINT	VELOCITY HEAD	GAS TEMP		TRAVERS	E POINT	VELOCITY HEAD	GAS TEMP
TIME	PORT	POINT	in. H₂O, ΔÞ	۰F	TIME	PORT	POINT	in. H ₂ O, ∆P	∕°F
1341	D	4	0.605	355					/
		3	0.007	355					
		2	0.010						
***************************************	C		0.008	333					
		4	0.010	351					
		3	0. DOLO	357					
		2	0.005	360				<u>/</u>	
		1	0.008	361			X		
	B	4	0.005	336					
		3	0.011	349					
		2	0.011	359					
		ſ	0.008	362	an the same of				
	A	4	0.006	33/3			,		
		3	0.007	343				\	
	<u> </u>	2	D.010	353	/	<u> </u>			
353			6.01)	360					
E E					 				
vg.			0.0078	351.3	V ^{vvg.}				

Appendix C.5 Fuel Meter Relative Accuracy Audit Moisture Data

A			С	ARNO	OT SAM	PLE	ı R	AIN -	TEST '	DAT/	Д						
CLIENT ARMSTRA			IND.	UNI	IT BOILE	R_	_ TES	ST NO. 🔏	1-H20)		тнор ≦⊘	AOMD	4.1 P/	AGE_/_	OF	/
SAMPLE LOCATION DU	ICT TO S			TES	ST CONDITIO	N 60	OU	004:	stern		AM'	IB. TEMP., º	۴	ÞF	ROJECT#	1/593	ζ
OPERATORIASSISTANT		BF //	RM	ME ⁷	TER VOL. (ST	[ART/EN	1D)	141	7.929	8		453.			ATE 9/2		
PRE-TEST DATA:	00 -		EQUIPMENT INFO:	Section being a section of		NAME OF TAXABLE PARTY.	lmp.	Mat'l	Wt.(End)	Wt.(St	Jant)	Wt.(g)	SAMPLE	TRAIN LE	AK CHEC	K:	
Barometric Press., in. Hg.	29.5		Meter ID No.		ES-19		#1	4.0	782.7					<u>CFM</u>	Vaç	Pitot	tnit
Assumed Stack Temp. °F		/	Meter, Yd,	washing.	1.0164	<u> </u>	ſ <u>`</u>	7	* \$0.000	12CIL		<u> 1121 · · · · · · · · · · · · · · · · · </u>			. //		
Assumed Meter Temp. °F	Afternation requirement of the second		CFM @ ΔH = 1.0		0.596	- '	#2	Hap	5580	3.55	3.0	5.0	Pre-Test	0.003	_// "		BAF
Assumed ∆P Assumed Moisture %	Mathematical Interpretation of the Parketter of the Parke	/	Pitot: ID	***********										A	-, 4	ť	~ , _
Stack Diameter, in.			Ср		55,		#3	<u>Ø</u> _	499.3	-497	<u> </u>	1.7	Post-Test	0.001	<u>_7</u> "		BAE
Sample Time: Total	100 4	min	Probe: Mat'l		3/		,,		_				1				
per point	100 V		Length Nozzle: ID/Mat			ا مر	#4 :	$\underline{S}.\underline{G}_{L}$	847.7	£837	<u></u>						
, ,	SINGLE			***************************************			#5			-			PKE-IES	ST CALIBRA			Tamp
Teflon Connecting		1	Filter: No.			J	.	***************************************		*	GT************************************			Time		eter Mete ading In	
Line (Y/N) _	_ <u> </u>		Tare V	M. $\overline{\ \ }$			Total POS1	I ST TEST I	INFO:		=	= 117.8		Time	₩ mxx	त्रापत पा	MM
Isokinetic Factor			TC Readout ID: Met	ter	TC 009	<u> </u>	1	г Арреага					Init				
$\Delta H = /.0$	X <i>}</i>	, l	Aux	4.			ł .	nger Appe		CLEA	AR	All Maries and the same of the					
TOTAL TRANSPORT SECTION SECTIO							Silica	a Gel Spe	ant (Y/N)	$-\lambda \mathcal{L}$	***************************************		Final _		PT-William brokens		
							ACRESCO CONTRACTOR			-	MATERITATION IN THE PROPERTY OF THE PROPERTY O			Antibidenes alemanis Anglica managanisa			
	MF	ETER CO	ONDITIONS		TE'	EMPERA	TURE	:S, °F					STATIC				
SAMPLE		. ,	METER	1		MET	(ER		17	IMP.			PRESS.	r	JHAIN OF	CUSTODY	,

			METER CO	NDITIONS		1	EMPERA	TURES,	'F				STATIC	
SAMPLE				METER			ME	TER		IMP.			PRESS.	CHAIN OF CUSTODY
POINT	TIME	ΔΡ	ΔΗ	READING	STACK	PROBE	IN	оит	OVEN	OUT	O ₂	VAC.	lwg	INFORMATION
SWGLE	1300		1.0	417.928			71	71		ICE		2	Control of the Contro	Impingers Loaded EGF
POINT	1245			436, 12			91	73		48 50		2		Impingers Recovered BAF
	1300						101	81		50		2		Filter Loaded —
	1315		4	444.1			106	86		53		2		Filter Recovered —
END	1400			453.174			KART							Probe Wash ——
														TEST SUMMARY
														Calculated by:
														Checked by: BAF
														Stack Press.(iwg)
														Stack Temp. (°F)
														ΔP (iwg) —
														O ₂ /CO ₂
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Meter Vol., (acf) 35.246 1
														Meter Vol., (acf) 35.246 Meter Temp. (°F) 85.0
			!										R	Meter Press. (iwg) (, D
														Liquid Vol. (g) 1/7.8
p .		1	1	Ì	1	1	ĺ							Comments

APPENDIX D ARMSTRONG PROCESS STEAM BOILER DATA

Appendix D.1 Fuel Flow Measurements for Fuel Meter Relative Accuracy Audit

RELATIVE ACCURACY AUDIT FUEL FLOW MEASUREMENTS RECLAIM LARGE SOURCE COMPLIANCE TESTING PROCESS STEAM BOILER ARMSTRONG WORLD INDUSTRIES, INC. SOUTH GATE PLANT

SEPTEMBER 26, 1996

Time of Reading	Fuel Volume Time		Time	Fuel Flow	Correction	Factors	Fuel Flow
(hr:min)	(acf)	(sec)	(min)	(acfm)	(Temperature)	(Pressure)	(scfm)
13:00	100	73.9	1.23	81.2	0.99	1.26	101.3
13:10	100	72.4	1.21	82.9	0.99	1.26	103.4
13:20	100	74.5	1.24	80.5	0.99	1.26	100.5

Time of Reading	Fuel Volume	Time	Time	B-RAA Fuel Flow	Correction	Factors	Fuel Flow
(hr:min)	(acf)	(sec)	(min)	(acfm)	(Temperature)	(Pressure)	(scfm)
13:20	100	74.5	1.24	80.5	0.99	1.26	100.5
13:30	100	65.4	1.09	91.7	0.99	1.26	114.4
13:40	100	73.6	1.23	81.5	0.99	1.26	101.7

ime of Reading	Fuel Volume	Time	Time	Fuel Flow	Correction	Factors	Fuel Flow
(hr:min)	(acf)	(sec)	(min)	(acfm)	(Țemperature)	(Pressure)	(scfm)
13:40	100	73.6	1.23	81.5	0.99	1.26	101.7
13:50	100	65.4	1.09	91.7	0.99	1.26	114.4
14:00	100	80.9	1.35	74.2	0.99	1.26	92.5

FUEL FLOW MEASUREMENTS PROCESS STEAM BOILER ARMSTRONG WORLD INDUSTRIES

TIME (hr: upin)	TIMED VOLUME (acf)	TIME (min:sec)	TAME (SEC)	
12:25	200	1:27.8		
13:00	26 100	1:13.9	73.9	
13:10	100	1:12.4	77.4	
13:20	100	1:14.5	74.5	
13:30	100	1:05.4	65.4	
13:40		1.136	73.6	
13:50	100	1:05.4	65.4	
14:00	100	1:20.9	80.9	

PRESSURE AND TEMPURATURE CORRECTION FACTORS AMERICAN METER CO. MODEL 3GT-10M PROCESS STEAM BOILER ARMSTRONG WORLD INDUSTRIES SOUTH GATE PLANT

Usi	ed for Emissi	on Calculatio i		ton III
Begin Read	294358	######		
End Read	296458	######		57. g
Uncorrected Amount	2100	mcf	: - Heat Input -	OK
Amount Calculated	2.61954	mmcf	2,750.52 mmBTU	Cance
Pressure	3.90	psig.		nis <u>Charactur.</u>
Pressure Factor	1.26	\leftarrow		Calcula
Temperature	64.40	degree F		Calcula
emperature Factor :	0.99	<-		Reset
High Heat Value	1050.00	mmBTU/mmc	f. A. S.	
			A CONTROL OF THE PROPERTY OF T	Control of the contro

Appendix D.2 Boiler Circle Chart and Boiler Log

ARMSTRONG WORLD INPUSTBES PROCESS STEAM BOILER RECLAM LARGE 9/26/96 SOURCE COMPLIANCE END TESTING START STEAM, Pph > FIVE GAS TEMP OF

NOTE: CIRCLE CHART TIME = ONE HOUR BEHIND ACTUAL TIME

South Bato, CA

5.

8 0 7,6 8 A 6 0 0

Tino	Love.	\$100A Pross.	Hanual Blow	Initialo
1 pa	· ok."	. 12!		1:51
2 aid	CK	120		·
l am	- bK	123		
2 ani·	al	125	4	1956
3 00	ck	121		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4 ፈል	OK	1119		1:5
S 400	ok	120		in Si
6 am	OK	123		۵.
7 am	02	125		BM
8 an	OK	124		BM
9 00	BK	120		13 hi
10 am	OK	122		BM
li am	OK	118		Ban
Noon	OK	123		BM
l pa	DK	120		BM
2 DM	076	125		(Srij
3 24	OK	122		J.W
4 pa	_0K	125	*	24
5 วล	DK	118		HB
6 pn	OK.	723		NG
7 p n	OK/	121		HE
864	٥K	125		JH
9pa	OK	119		2H
lop*	OK	1 24		J.H

, GAS	-
FEED WATER 65252	
•	٢
	r
CHEMICAL TREATMENT OF BOILER	e
National Chemicals	e.
AMOUNT : INITIA.	
H/E 0 - 104 BM 1374 H/E 0 - 190 BM	c
Continuous Blowdown Solling 3500 BM	E
WATER SOFTENER	c
Regenerate 182 Bh	c
WATER LEVEL ALARMS	
Time Init.	r
Checked at 1 Daily Br	,
inshed By:	
	٢
SOMACNIS:	r
MOTE: Any evidence of faulty of if any piece of equipment aust investigated. If you can not f	•

immodiately notify your superv. it can be taken care of. write back of this shoot any such con

APPENDIX E EMISSION CALCULATIONS

EMISSION CALCULATIONS

1. Sample Volume and Isokinetics

a. Sample gas volume, dscf

$$V_{m,sad} = 0.03342 \ V_{m} \left(P_{bar} + \frac{H}{13.6} \right) \left(\frac{T_{ref}}{T_{m}} \right) (Y)$$

b. Water vapor volume, scf

$$V_{w std} = 0.0472 \ V_{lc} \left(\frac{T_{ref}}{528 \ ^{\circ}R} \right)$$

c. Moisture content, nondimensional

$$B_{wo} = \frac{V_{w \text{ std}}}{V_{m \text{ std}} + V_{w \text{ std}}}$$

d. Stack gas molecular weight, lb/lb mole

$$MW_{dry} = 0.44 \ (\%CO_2) + 0.32 \ (\%O_2) + 0.28 \ (\%N_2)$$

$$MW_{wet} = MW_{dry} (1 - B_{wo}) + 18 (B_{wo})$$

e. Absolute stack pressure, in Hg

$$P_s = P_{bar} + \frac{P_{sg}}{13.6}$$

f. Stack velocity, ft/sec

$$V_s = 2.90 \ C_p \sqrt{\Delta PT_s} \sqrt{\left(\frac{29.92}{p_s}\right) \left(\frac{28.95}{MW_{wet}}\right)}$$

g. Actual stack flow rate, wacfm

$$Q = (V_s)(A_s)(60)$$

h. Standard stack gas flow rate, dscfm

$$-Q_{sd} = Q (1 - B_{wo}) \left(\frac{T_{ref}}{T_s} \right) \left(\frac{P_s}{29.92} \right)$$

i. Percent isokinetic

$$I = \left(\frac{17.32 (T_s) (V_{m,std})}{(1 - B_{wo})(\Theta) (V_s) (P_s) (D_a^2)}\right) \left(\frac{528 \, {}^{\circ} R}{T_{ref}}\right)$$

2. Particulate Emissions

a. Grain loading, gr/dscf

$$C = 0.01543 \left(\frac{M_n}{V_{m \ std}} \right)$$

b. Grain loading at 12% CO₂, gr/dscf

$$C_{12\%CO_2} = C\left(\frac{12}{\%CO_2}\right)$$

c. Mass emissions, lb/hr

$$M = C(Q_{sd}) \frac{(60 \text{ min/hr})}{(7000 \text{ gr/lb})}$$

3. Gaseous Emissions, lb/hr

$$M = (ppm)(10^{-6}) \left(\frac{MW_i \ lb/lb \ mole}{SV} \right) (Q_{sd}) (60 \ min/hr)$$

where,

SV = specific molar volume of an ideal gas:

$$SV = 385.3 \text{ ft}^3/\text{lb mole}$$
 for $T_{ref} = 528 \text{ }^{\circ}R$

$$SV = 379.5 \text{ ft}^3/\text{lb mole}$$
 for $T_{ref} = 520 \text{ }^{\circ}\text{R}$

4. Emissions Rates, 1b/10⁶ Btu

a. Fuel factor at 68 °F, dscf/10° Btu at 0% O₂

$$F_{68} = \frac{10^{6}[3.64(\%H) + 1.53(\%C) + 0.14 (\%N) + 0.57(\%S) - 0.46(\%O_{2},fuel)]}{HHV, Btu/lb}$$

b. Fuel factor at 60 °F

$$F_{60} = F_{68} \left(\frac{520 \, ^{\circ} R}{528 \, ^{\circ} R} \right)$$

c. Gaseous Emissions factor

$$\left(\frac{lb}{10^6 Btu}\right)_i = (ppm)_i (10^{-6}) \left(\frac{MW_i lb}{lb mole}\right) \left(\frac{1}{SV}\right) (F) \left(\frac{20.9}{20.9 - \%O_2}\right)$$

d. Paticulate emission factor

$$\left(\frac{lb}{10^6 Btu}\right) = C\left(\frac{1 lb}{7000 gr}\right) (F) \left(\frac{20.9}{20.9 - \%O_2}\right)$$

Nomenclature:

 A_s = stack area, ft²

 B_{wo} = flue gas moisture content

 $C_{12\% CO_2}$ = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf

 C_n = pitot calibration factor, dimensionless

Dn = nozzle diameter, in.

F = fuel F factor, dscf/10⁶ Btu at 0% O₂

H = orifice pressure differential, iwg

I = % isokinetics

 M_n = mass of collected particulate, mg

 M_i = mass emissions of species i, lb/hr

MW = molecular weight of flue gas

 MW_i = molecular weight of species i:

NO_x: 46 CO: 28 SO_x: 64

Nomenclature (Continued):

 θ = sample time, min.

 ΔP = average velocity head, iwg = $(\sqrt{\overline{\Delta P}})^2$

 P_{bar} = barometric pressure, in.Hg

P_s = stack absolute pressure, in.Hg

 P_{sg} = stack static pressure, iwg

Q = wet stack_gas flow rate at actual conditions, wacfm

Qsd = dry stack gas flow rate at standard conditions, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb mole

Tm = meter temperature, °R

 T_{ref} = reference temperature, °R

Ts = stack temperature, °R

 V_s = stack velocity, ft/sec

 V_{ic} = volume of liquid collected in impingers, ml

Vm = dry meter volume uncorrected, dcf

 $V_{m,std}$ = dry meter volume at standard conditions, dscf

 $V_{w std}$ = volume of water vapor at standard conditions, scf

Y = meter calibration coefficient

APPENDIX F CARNOT CEMS STRIP CHART

MEMORANDUM

to Amno.	N 5 100	\C			a	
DATE:	November 5, 199	0		•	AST_{DR}	ECEU
TO:	John Higuchi				NOVU	5 man
FROM:	Merrill Hickman	mkh		S.	T. & E. A	PECEIVED 5 1996 BRANCH
SUBJECT:	Review Request					^{MANCH}
	I document is submi provide comments o					it if your staff could
REQUESTI	ED RESPONSE DA	ATE:	December	5, 1996 A/	N1	N/A
COMPANY	NAME & LOCA	TION:	Armstrong	World Industri	ies - ID#	012155
PROJECT		duration		minutes-minim	<u>um, 1 r</u>	un-minimum,
	_		0156 - Boiler			
	& RETURN TO:			[X] RECL		2676
S/T		[]	CEM			
S/T &	Ł LAB	[]	Test Protocol			
S/T &	ŁAB	[X]	Test Report [X] test pro	otocol already a	approved	i
			[] test pro	otocol not appro	oved	

NOTES: Please review the attached protocol for proper test methods and procedures.

Other:

S/T & LAB

APPLIED SCIENCE & TECHNOLOGY SOURCE TESTING & ENGINEERING

CHECKLIST FOR REQUEST TO REVIEW SOURCE TEST PROTOCOL/REPORT(ST-1)

Submit this checklist with the review request memorandum when an evaluation of a source test protocol or report is requested.

The reviewing engineer will use this checklist to assure that basic information necessary to do the evaluation is either provided in the report or included with the request. An incomplete submittal will delay the evaluation of the report.

<u>LIST</u>	I Check off each of the following items to verify that the information is provided in the source test report/protocol and then send it along with the report/protocol.
	Information form ST-2 with those applicable parts filled out completely.
[i]	Complete Permit to Construct or Permit to Operate, including all conditions. (facility permit not included due to size per discusion with Steve Marinoff, if it becomes necesary please contact Merrill at x2676)
[4]	Brief description of the equipment (to be) tested.
14	Brief process description, including maximum and normal operating temperatures, pressures, through-put, etc.
[1]	Operating conditions under which test (will be) was performed.
[4]	Process schematic diagram showing the ports and sampling locations, including the dimensions of the ducts/stacks at the sampling locations, along with upstream and downstream distances to flow disturbances, (e.g. elbows, tees, fans) from the sampling locations.
[4]	Field and laboratory data forms.
	Brief description of sampling and analytical methods for each constituent to be measured. If a standard District, EPA, or ARB method without "any deviation" will be used, reference it by number.
U/	Calculations for volumetric flow rates and emission rates.
[L]	Calibration and quality assurance procedures identified.
4	An acceptable method for determining usage rate of organic materials for Reg. 11 VOC testing.

Testing laboratory qualifies as an "independent testing laboratory" under Rule 304 (no

conflict of interest).

INFORMATION REQUEST FORM (ST-2) FOR PROTOCOL/REPORT REVIEW

The person requesting evaluation of a source test protocol or report shall mark the appropriate items and provide the requested information. The sampling and analytical methods will be reviewed *only* for those constituents identified on this form.

Carrit	Allowab	le Limits ¹	***************************************			AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
Constituent to be measured	concentration ppm	mass flow rate	Rule or Permit Condition	NSPS 40CFR60 (identify subpart)	Sampling Location	Other Requriements
NO _x as NO ₂			Rule 2012(j)		Exhaust Stack	20. 0
DISC	30					5% Oz
02						
Oz RAA				,		

⁽¹⁾ If allowable limit is specified in rule or permit by mass flow rate only, please convert to approximate ppm levels and mark with an asterisk (*).

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

APPLIED SCIENCE and TECHNOLOGY * SOURCE TESTING and ENGINEERING BRANCH

PERFORMANCE TEST PLAN EVALUATION WORKSHEET

SOURCE TEST ID #:

96082

COMPANY ID #:

012155

COMPANY: Armstrong World Industries

MAILING ADDRESS: 5037 Patata Street

MAILING CITY / ZIP:

South Gate, CA 90280

BASIC EQUIPMENT:

Boiler

EQUIPMENT ADDRESS: 5037 Patata St., South Gate

PERFORMANCE TEST EVALUATION *				
TRXN TYPE	TYPE OF EVALUATION	HOURLY FEE	NO. OF HOURS	SUBTOTAL
36	MINIMUM FEE			\$409.60
	REPORT		5	
	BASIC WORK HOURS		10	
	ADDITIONAL CHARGE IN EXCESS OF THE BASIC HOURS (15 HOURS MAX.)	\$76.81	0	\$0.00

TOTAL: \$409.60

(\$1561.80 Max.)

AUTHORIZED FOR BILLING

^{*} A minimum fee of \$404.80 will be charged for the evaluation of source test protocols and reports. Additional fees will be assessed at a rate of \$75,90 per hour for time spent for evaluation in excess of 10 hours up to a maximum total fee of \$1543.30.